题目链接

题意是说在几个邮局之间传送一份信件,如果出发点和终止点在同一个国家传递,则时间为0,否则让你求花费最少时间,如果不能传到,则输出Nao e possivel entregar a carta。判断邮局是否在同一个国家的依据是发出的信件可以相互到达。
如果直接求最短路则无法判断两个邮局是否在同一个国家,判断两个邮局是否属于同一个国家的标志是在这个国家邮局间可以相互到达,那么这就是强连通了,所以要先缩点判读邮局是否在同一个国家,如果不是,则重新建图,建图的时候要维护好边权,求出最短边权,在用dijkstra求出最短路即可。
 #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
const int Max = ;
const int INF = 0x3f3f3f3f;
int n, m, dfs_clock, scc_cnt, scnt;
int g[Max][Max], pre[Max], low[Max], Stack[Max], sccno[Max];
int G[Max][Max];
int head[Max], num;
struct Edge
{
int v, Next;
};
Edge edge[Max * Max];
void addEdge(int u, int v)
{
edge[num].v = v;
edge[num].Next = head[u];
head[u] = num++;
}
void init()
{
memset(head, -, sizeof(head));
memset(pre, , sizeof(pre));
//memset(low, 0, sizeof(low));
memset(sccno, , sizeof(sccno));
scnt = dfs_clock = scc_cnt = num = ;
for (int i = ; i <= n; i++)
for (int j = i; j <= n; j++)
{
if (i == j)
G[i][j] = g[i][j] = ;
else
{
g[i][j] = g[j][i] = INF;
G[i][j] = G[j][i] = INF;
}
}
}
void dfs(int u)
{
pre[u] = low[u] = ++dfs_clock;
Stack[scnt++] = u;
for (int i = head[u]; i != -; i = edge[i].Next)
{
int v = edge[i].v;
if (!pre[v])
{
dfs(v);
low[u] = min(low[u], low[v]);
}
else if (!sccno[v])
low[u] = min(low[u], pre[v]);
}
if (low[u] == pre[u])
{
scc_cnt++;
for (; ;)
{
int x = Stack[--scnt];
sccno[x] = scc_cnt;
if ( x == u)
break;
}
}
}
void find_scc()
{
for (int i = ; i <= n; i++)
{
if (!pre[i])
dfs(i);
}
}
void build_new_graphic()
{
for (int i = ; i <= n; i++)
{
for (int j = ; j <= n; j++)
{
if (i != j && sccno[i] != sccno[j] && g[i][j] != INF) // 不同的连通分量号建立一条有向边。
{
G[ sccno[i] ][ sccno[j] ] = min(g[i][j], G[ sccno[i] ][ sccno[j] ]);
}
}
}
}
int dist[Max], vis[Max];
void dijkstra(int start, int goal)
{
//利用起点start,终点goal来搞,以前做惯了,直接用起点是1来做了
for (int i = ; i <= scc_cnt; i++)
dist[i] = G[start][i];
memset(vis, , sizeof(vis));
dist[start] = ;
vis[start] = ;
for (int i = ; i <= scc_cnt; i++)
{
int minn = INF, pos = ; // 这里初始化pos为1,否则当下面的循环不满足条件是,执行vis[pos]会出错
for (int j = ; j <= scc_cnt; j++)
{
if (!vis[j] && minn > dist[j])
{
minn = dist[j];
pos = j;
}
}
vis[pos] = ;
for (int j = ; j <= scc_cnt; j++)
{
if (!vis[j] && dist[j] > dist[pos] + G[pos][j])
dist[j] = dist[pos] + G[pos][j];
}
}
if (dist[goal] != INF)
printf("%d\n", dist[goal]);
else
printf("Nao e possivel entregar a carta\n");
}
int main()
{
while (scanf("%d%d", &n, &m) != EOF)
{
if (n == && m == )
break;
init();
int u, v, c;
for (int i = ; i <= m; i++)
{
scanf("%d%d%d", &u, &v, &c);
if (g[u][v] > c)
{
g[u][v] = c; // 判断重边
}
addEdge(u, v);
}
find_scc(); // 找强连通分量
//cout << scc_cnt << endl;
build_new_graphic(); // 重新构图 int k;
scanf("%d", &k);
while (k--)
{
scanf("%d%d", &u, &v);
if (sccno[u] == sccno[v]) // 同一连通分量直接输出
printf("0\n");
else
{
dijkstra(sccno[u], sccno[v]);
}
}
printf("\n");
} return ;
}

POJ3114 Countries in War (强连通分量 + 缩点 + 最短路径 + 好题)的更多相关文章

  1. Countries in War(强连通分量及其缩点)

    http://poj.org/problem?id=3114 题意:有n个城市,m条边,由a城市到b城市的通信时间为w,若a城市与b城市连通,b城市与a城市也连通,则a,b城市之间的通信时间为0,求出 ...

  2. POJ1236Network of Schools[强连通分量|缩点]

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16571   Accepted: 65 ...

  3. POJ1236Network of Schools(强连通分量 + 缩点)

    题目链接Network of Schools 参考斌神博客 强连通分量缩点求入度为0的个数和出度为0的分量个数 题目大意:N(2<N<100)各学校之间有单向的网络,每个学校得到一套软件后 ...

  4. HD2767Proving Equivalences(有向图强连通分量+缩点)

    题目链接 题意:有n个节点的图,现在给出了m个边,问最小加多少边是的图是强连通的 分析:首先找到强连通分量,然后把每一个强连通分量缩成一个点,然后就得到了一个DAG.接下来,设有a个节点(每个节点对应 ...

  5. UVa11324 The Largest Clique(强连通分量+缩点+记忆化搜索)

    题目给一张有向图G,要在其传递闭包T(G)上删除若干点,使得留下来的所有点具有单连通性,问最多能留下几个点. 其实这道题在T(G)上的连通性等同于在G上的连通性,所以考虑G就行了. 那么问题就简单了, ...

  6. ZOJ3795 Grouping(强连通分量+缩点+记忆化搜索)

    题目给一张有向图,要把点分组,问最少要几个组使得同组内的任意两点不连通. 首先考虑找出强连通分量缩点后形成DAG,强连通分量内的点肯定各自一组,两个强连通分量的拓扑序能确定的也得各自一组. 能在同一组 ...

  7. POJ2553 The Bottom of a Graph(强连通分量+缩点)

    题目是问,一个有向图有多少个点v满足∀w∈V:(v→w)⇒(w→v). 把图的强连通分量缩点,那么答案显然就是所有出度为0的点. 用Tarjan找强连通分量: #include<cstdio&g ...

  8. uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...

  9. poj 2762 Going from u to v or from v to u?(强连通分量+缩点重构图+拓扑排序)

    http://poj.org/problem?id=2762 Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit:  ...

随机推荐

  1. Bootstrap系列 -- 9. 表格

    一. Bootstrap 表格样式支持 Bootstrap提供了六种不同风格的样式支持,其中一个基础样式,4个附件样式,1个响应式设计样式 1. .table:基础表格 2. .table-strip ...

  2. 解决问题:由于扩展配置问题而无法提供您请求的页面。如果该页面是脚本,请添加处理程序。如果应下载文件,请添加 MIME 映射。

    WindowServer2012服务器,添加角色安装完.netframework和iis之后,运行aspx页面就报如下错误: HTTP 错误 404.3 - Not Found 由于扩展配置问题而无法 ...

  3. linux基础-第十七单元 Samba服务

    Samba的功能 Samba的安装 Samba服务的启动.停止.重启 Samba服务的配置 Samba服务的主配置文件 samba服务器配置实例 Samba客户端设置 windows客户端 Linux ...

  4. 十天冲刺---Day7

    站立式会议 站立式会议内容总结: 燃尽图 照片 两个人编码其实效率挺高的.但是在一些方面,比如说页面UI的编写,会非常吃力,很难达到自己的效果. 由于埋头在编码,所以issues的增加随之停止. 有点 ...

  5. CSS巩固

    1. 浮动元素与非浮动元素在一行,浮动元素不占宽度.所以应将非浮动元素改为浮动,或让非浮动元素的宽度为当前行的宽度. 元素浮动之后,周围的元素会重新排列. 2. 布局找模板,或参考其他网站! 自己进行 ...

  6. xml文件的生成与解析

    生成方法一:同事StringBuffer类对xml文件格式解析写入 package com.steel_rocky.xml; import android.app.Activity; import a ...

  7. git标签

    git标签 如果你达到一个重要的阶段,并希望永远记住那个特别的提交快照,你可以使用 git tag 给它打上标签.-a 选项意为"创建一个带注解的标签". 添加标签命令: $ gi ...

  8. jquery slide使用总结

    .slideUp([duration][,complete])--目标元素向上滑入隐藏: .slideDown([duration][,complete])--目标元素向下滑出显示: .slideTo ...

  9. nginx 的动静分离配置(tomcat)

    nginx+tomcat是想动静分离配置 首先在nginx的配置文件中添加tomcat的的集群配置 upstream tomcats { ip_hash; server 192.168.0.251:8 ...

  10. Query DSL for elasticsearch Query

    Query DSL Query DSL (资料来自: http://www.elasticsearch.cn/guide/reference/query-dsl/) http://elasticsea ...