(一)Spark简介-Java&Python版Spark
Spark简介
视频教程:
1、优酷
2、YouTube
简介:
Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL、Spark Streaming、MLLib和GraphX等组件,也就是BDAS(伯克利数据分析栈),这些组件逐渐形成大数据处理一站式解决平台。
Spark使用Scala语言实现,它是一种面向对象、函数式编程语言,能够像操作本地集合对象一样轻松的操作分布式数据集。
Spark特点:
1、运行速度快
Spark拥有DAG执行引擎,支持在内存中对数据进行迭代计算。官方提供的数据表明,如果数据由磁盘读取,速度是Hadoop MapReduce的10倍以上,如果数据从内存中读取,速度可以高达100多倍。
2、易用性好
Spark不仅支持Scala编写应用程序,而且支持Java和Python等语言进行编写,特别是Scala是一种高效、可拓展的语言,能够用简洁的代码处理较为复杂的处理工作。
3、通用性强
Spark生态圈即BDAS(伯克利数据分析栈)包含了Spark Core、Spark SQL、SparkStreaming、MLLib和GraphX等组件,这些组件分别处理:Spark Core提供内存计算框架、SparkStreaming的实时处理应用、Spark SQL的即时查询、MLlib的机器学习和GraphX的图处理,它们都是由AMP实验室提供,能够无缝的集成并提供一站式解决平台。
4、随处运行
Spark具有很强的适应性,能够读取HDFS、Cassandra、HBase、S3为持久层读写原生数据,能够以Mesos、YARN和自身携带的Standalone作为资源管理器调度job,来完成Spark应用程序的计算。
Spark与Hadoop的对比(Spark的优势)
1、Spark的中间数据放到内存中,对于迭代运算效率更高
2、Spark比Hadoop更通用
3、Spark提供了统一的编程接口
4、容错性– 在分布式数据集计算时通过checkpoint来实现容错
5、可用性– Spark通过提供丰富的Scala, Java,Python API及交互式Shell来提高可用性
1、目前大数据处理场景
1. 复杂的批量处理(Batch Data Processing),偏重点在于处理海量数据的能力,至于处理速度可忍受,通常的时间可能是在数十分钟到数小时;
2. 基于历史数据的交互式查询(Interactive Query),通常的时间在数十秒到数十分钟之间
3. 基于实时数据流的数据处理(Streaming Data Processing),通常在数百毫秒到数秒之间
2、以上三种场景都有比较成熟的处理框架
1————————Hadoop的MapReduce来进行海量数据的批处理
2————————Impala进行交互式查询
3————————Storm分布式处理框架处理实时流式数据
3、总结:
1、Spark是基于内存的迭代计算框架,适用于需要多次操作特定数据集的应用场合。需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小但是计算密集度较大的场合,受益就相对较小。
2、由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的web爬虫和索引。就是对于那种增量修改的应用模型不适合。
3、数据量不是特别大,但是要求实时统计分析需求。
Spark成功案例:
1、腾讯
广点通是最早使用Spark的应用之一。腾讯大数据精准推荐借助Spark快速迭代的优势,围绕“数据+算法+系统”这套技术方案,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通投放系统上,支持每天上百亿的请求量。
2、Yahoo
Yahoo将Spark用在Audience Expansion中的应用。Audience Expansion是广告中寻找目标用户的一种方法:首先广告者提供一些观看了广告并且购买产品的样本客户,据此进行
学习,寻找更多可能转化的用户,对他们定向广告。Yahoo采用的算法是logistic regression。目前在Yahoo部署的Spark集群有112台节点,9.2TB内存。
3、淘宝
阿里搜索和广告业务,最初使用Mahout或者自己写的MR来解决复杂的机器学习,导致效率低而且代码不易维护。淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。将Spark运用于淘宝的推荐相关算法上,同时还利用Graphx解决了许多生产问题,包括:基于度分布的中枢节点发现、基于最大连通图的社区发现、基于三角形计数的关系衡量、基于随机游走的用户属性传播等。
Spark运行模式:
Local |
本地模式 |
用于本地开发测试,本地还分为local单线程和local-cluster多线程。 |
On yarn |
集群模式 |
运行在yarn框架之上,由yarn负责资源管理,Spark负责任务调度和计算。 |
Standalone |
集群模式 |
典型的Mater-slave模式,Spark自带的模式。 |
Concepts:
Application:
Spark Application的概念和Hadoop MapReduce类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码。
Driver:
Spark中的Driver即运行上述Application的main()函数并且创建SparkContext,其中创建SparkContext的目的是为了准备Spark应用程序的运行环境。在Spark中由SparkContext负责和ClusterManager通信,进行资源的申请、任务的分配和监控等;当Executor部分运行完毕后,Driver负责将SparkContext关闭。通常用SparkContext代表Drive。
Executor:
Application运行在Worker 节点上的一个进程,该进程负责运行Task,并且负责将数据存在内存或者磁盘上,每个Application都有各自独立的一批Executor。在Spark on Yarn模式下,其进程名称为CoarseGrainedExecutorBackend,类似于Hadoop MapReduce中的YarnChild。一个CoarseGrainedExecutorBackend进程有且仅有一个executor对象,它负责将Task包装成taskRunner,并从线程池中抽取出一个空闲线程运行Task。每个CoarseGrainedExecutorBackend能并行运行Task的数量就取决于分配给它的CPU的个数了。
Cluster Manager:
指的是在集群上获取资源的外部服务,目前有:Standalone、Mesos、Yarn
Worker:
集群中任何可以运行Application代码的节点,类似于YARN中的NodeManager节点。在Standalone模式中指的就是通过Slave文件配置的Worker节点,在Spark on Yarn模式中指的就是NodeManager节点。
作业(Job):
包含多个Task组成的并行计算,往往由Spark Action催生,一个JOB包含多个RDD及作用于相应RDD上的各种Operation。
阶段(Stage):
每个Job会被拆分很多组Task,每组任务被称为Stage,也可称TaskSet,一个作业分为多个阶段。
任务(Task):
被送到某个Executor上的工作任务。
RDD(*):
是Resilient distributed datasets的简称,中文为弹性分布式数据集;是Spark最核心的模块和类。
DAGScheduler:
根据Job构建基于Stage的DAG,并提交Stage给TaskScheduler。
TaskScheduler:
将Taskset提交给Worker node集群运行并返回结果。
Transformations:
是Spark API的一种类型,Transformation返回值还是一个RDD, 所有的Transformation采用的都是懒策略,如果只是将Transformation提交是不会执行计算的。
Action:
是Spark API的一种类型,Action返回值不是一个RDD,而是一个scala集合;计算只有在Action被提交的时候计算才被触发。
(一)Spark简介-Java&Python版Spark的更多相关文章
- (八)map,filter,flatMap算子-Java&Python版Spark
map,filter,flatMap算子 视频教程: 1.优酷 2.YouTube 1.map map是将源JavaRDD的一个一个元素的传入call方法,并经过算法后一个一个的返回从而生成一个新的J ...
- (四)Spark集群搭建-Java&Python版Spark
Spark集群搭建 视频教程 1.优酷 2.YouTube 安装scala环境 下载地址http://www.scala-lang.org/download/ 上传scala-2.10.5.tgz到m ...
- (九)groupByKey,reduceByKey,sortByKey算子-Java&Python版Spark
groupByKey,reduceByKey,sortByKey算子 视频教程: 1.优酷 2. YouTube 1.groupByKey groupByKey是对每个key进行合并操作,但只生成一个 ...
- (三)Spark-Hadoop集群搭建-Java&Python版Spark
Spark-Hadoop集群搭建 视频教程: 1.优酷 2.YouTube 配置java 启动ftp [root@master ~]# /etc/init.d/vsftpd restart 关闭 vs ...
- (七)Transformation和action详解-Java&Python版Spark
Transformation和action详解 视频教程: 1.优酷 2.YouTube 什么是算子 算子是RDD中定义的函数,可以对RDD中的数据进行转换和操作. 算子分类: 具体: 1.Value ...
- (二)Spark-Linux环境准备-Java&Python版Spark
Spark-Linux环境准备 视频教程: 1.优酷 2.YouTube 硬软件环境 1.虚拟机:VMware Workstation 12 2.虚拟机操作系统:RedHat5u4,单核,1G内存,2 ...
- 自己动手实现智能家居之树莓派GPIO简介(Python版)
[前言] 一个热爱技术的人一定向往有一个科技感十足的环境吧,那何不亲自实践一下属于技术人的座右铭:“技术改变世界”. 就让我们一步步动手搭建一个属于自己的“智能家居平台”吧(不要对这个名词抬杠啦,技术 ...
- Spark入门(Python版)
Hadoop是对大数据集进行分布式计算的标准工具,这也是为什么当你穿过机场时能看到”大数据(Big Data)”广告的原因.它已经成为大数据的操作系统,提供了包括工具和技巧在内的丰富生态系统,允许使用 ...
- (六)Spark-Eclipse开发环境WordCount-Java&Python版Spark
Spark-Eclipse开发环境WordCount 视频教程: 1.优酷 2.YouTube 安装eclipse 解压eclipse-jee-mars-2-win32-x86_64.zip Java ...
随机推荐
- Cassandra简介
在前面的一篇文章<图形数据库Neo4J简介>中,我们介绍了一种非常流行的图形数据库Neo4J的使用方法.而在本文中,我们将对另外一种类型的NoSQL数据库——Cassandra进行简单地介 ...
- Python标准模块--ContextManager
1 模块简介 在数年前,Python 2.5 加入了一个非常特殊的关键字,就是with.with语句允许开发者创建上下文管理器.什么是上下文管理器?上下文管理器就是允许你可以自动地开始和结束一些事情. ...
- 基于netty http协议栈的轻量级流程控制组件的实现
今儿个是冬至,所谓“冬大过年”,公司也应景五点钟就放大伙儿回家吃饺子喝羊肉汤了,而我本着极高的职业素养依然坚持留在公司(实则因为没饺子吃没羊肉汤喝,只能呆公司吃食堂……).趁着这一个多小时的时间,想跟 ...
- Kooboo CMS技术文档之一:Kooboo CMS技术背景
语言平台 依赖注入方案 存储模型 1. 语言平台 Kooboo CMS基于.NET Framework 4.x,.NET Framework 4.x的一些技术特性成为站点开发人员使用Kooboo CM ...
- bzoj1584--DP
题目大意:有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分成若干段,定义每段的不河蟹度为:若 ...
- python 数据类型 -- 元组
元组其实是一种只读列表, 不能增,改, 只可以查询 对于不可变的信息将使用元组:例如数据连接配置 元组的两个方法: index, count >>> r = (1,1,2,3) &g ...
- kali linux下的arp攻击
这是我第一篇博客,写的不好请谅解 ____________________________(分割线)_______________________________ 在kali linux系统下自带工具 ...
- python性能检测工具整理
python 运行后出现core dump产生core.**文件,可通过gdb来调试 Using GDB with a core dump having found build/python/core ...
- Openstack Periodic Task
Openstack Periodic Task 周期性任务在各个模块的manager.py(computer,scheduler,cell,network)中添加. 添加方法:在模块manager类实 ...
- 转: 如何高效利用GitHub
注:写了很多使用哲学,有意思 from: http://www.yangzhiping.com/tech/github.html