ID3算法
转自:http://blog.sina.com.cn/s/blog_6e85bf420100ohma.html
信息熵就是一组数据包含的信息,概率的度量。一组数据越有序信息熵也就越低,极端时如果一组数据中只有一个非0,其它都是0,那么熵等于0,因为只有可能是这个非0的情况发生,它给人们的信息已经确定了,或者说不含有任何信息了,因为信息熵含量为0。一组数据越无序信息熵也就越高,极端时如果一组数据均匀分布,那么它的熵最大,因为我们不知道那种情况发生的概率大些。假如一组数据由{d1,d2,...,dn}构成,其和是sum,那么求信息熵的公式是。
分类预测算法属于有指导学习,方法是通过训练数据,按照参考属性对目标属性的依赖程度对参考属性分级别处理,这种分级别处理体现在创建决策树,目的是通过生成的判别树,产生规则,用来判断以后的数据。以如下数据为例:
共14条记录,目标属性是,是否买电脑,共有两个情况,yes或者no。参考属性有4种情况,分别是,age,income,student,credit_rating。属性age有3种取值情况,分别是,youth,middle_aged,senior,属性income有3种取值情况,分别是,high,medium,low,属性student有2种取值情况,分别是,no,yes,属性credit_rating有2种取值情况,分别是fair,excellent。我们先求参考属性的信息熵:
,式中的5表示5个no,9表示9个yes,14是总的记录数。接下来我们求各个参考属性在取各自的值对应目标属性的信息熵,以属性age为例,有3种取值情况,分别是youth,middle_aged,senior,先考虑youth,youth共出现5次,3次no,2次yes,于是信息熵:
类似得到middle_aged和senior的信息熵,分别是:0和0.971。整个属性age的信息熵应该是它们的加权平均值:
。下面引入信息增益(information
gain)这个概念,用Gain(D)表示,该概念是指信息熵的有效减少量,该量越高,表明目标属性在该参考属性那失去的信息熵越多,那么该属性越应该在决策树的上层(如果不好理解,可以用极限的方法,即假如在age属性上,当为youth时全部是on,当为middle时也全部是no,当为senior时全不是yes,那么Hage(D)=0)。,类似可以求出Gain(income)=0.029,Gain(stduent)=0.151,Gain(credit_rating)=0.048。最大值为Gain(age),所以首先按照参考属性age,将数据分为3类,如下:
然后分别按照上面的方法递归的分类。递归终止的条件是,1,当分到某类时,目标属性全是一个值,如这里当年龄取middle_aged时,目标属性全是yes。2,当分到某类时,某个值的比例达到了给定的阈值,如这里当年龄取youth时,有60%的是no,当然实际的阈值远远大于60%。
ID3算法的更多相关文章
- 决策树ID3算法的java实现(基本试用所有的ID3)
已知:流感训练数据集,预定义两个类别: 求:用ID3算法建立流感的属性描述决策树 流感训练数据集 No. 头痛 肌肉痛 体温 患流感 1 是(1) 是(1) 正常(0) 否(0) 2 是(1) 是(1 ...
- 数据挖掘之决策树ID3算法(C#实现)
决策树是一种非常经典的分类器,它的作用原理有点类似于我们玩的猜谜游戏.比如猜一个动物: 问:这个动物是陆生动物吗? 答:是的. 问:这个动物有鳃吗? 答:没有. 这样的两个问题顺序就有些颠倒,因为一般 ...
- 决策树 -- ID3算法小结
ID3算法(Iterative Dichotomiser 3 迭代二叉树3代),是一个由Ross Quinlan发明的用于决策树的算法:简单理论是越是小型的决策树越优于大的决策树. 算法归 ...
- 机器学习笔记----- ID3算法的python实战
本文申明:本文原创,如有转载请申明.数据代码来自实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. Hell ...
- 决策树-预测隐形眼镜类型 (ID3算法,C4.5算法,CART算法,GINI指数,剪枝,随机森林)
1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? ...
- 决策树笔记:使用ID3算法
决策树笔记:使用ID3算法 决策树笔记:使用ID3算法 机器学习 先说一个偶然的想法:同样的一堆节点构成的二叉树,平衡树和非平衡树的区别,可以认为是"是否按照重要度逐渐降低"的顺序 ...
- ID3算法 决策树的生成(2)
# coding:utf-8 import matplotlib.pyplot as plt import numpy as np import pylab def createDataSet(): ...
- ID3算法 决策树的生成(1)
# coding:utf-8 import matplotlib.pyplot as plt import numpy as np import pylab def createDataSet(): ...
- 决策树的基本ID3算法
一 ID3算法的大致思想 基本的ID3算法是通过自顶向下构造决策树来进行学习的.我们首先思考的是树的构造从哪里开始,这就涉及到选择属性进行树的构造了,那么怎样选择属性呢?为了解决这个问题,我们使用统 ...
- Python实现ID3算法
自己用Python写的数据挖掘中的ID3算法,现在觉得Python是实现算法的最好工具: 先贴出ID3算法的介绍地址http://wenku.baidu.com/view/cddddaed0975f4 ...
随机推荐
- Codeforces Round #143 (Div. 2) E. Cactus 无向图缩环+LCA
E. Cactus A connected undirected graph is called a vertex cactus, if each vertex of this graph bel ...
- 及其简短的Splay代码
#include <stdio.h> #include <queue> #include <algorithm> #include <stdlib.h> ...
- mysql 导出表结构和表数据 mysqldump用法
mysql 导出表结构和表数据 mysqldump用法 命令行下具体用法如下: mysqldump -u用戶名 -p密码 -d 数据库名 表名 > 脚本名; 导出整个数据库结构和数据mysq ...
- Android学习系列(37)--App调试内存泄露之Context篇(下)
接着<Android学习系列(36)--App调试内存泄露之Context篇(上)>继续分析. 5. AsyncTask对象 我N年前去盛大面过一次试,当时面试官极力推荐我使用AsyncT ...
- dreamwaver cs6 主题配色方案
这是css代码效果 这是js效果 这是html效果 使用方法:1.将下列代码自制到一个文本文档中,将文档命名为Colors.xml. 2.将Colors.xml放到C:\Users\tom\AppDa ...
- java发送短信--httpclient方式
最近头让我写个发送短信的java程序检测BI系统,检查数据库是否有异常发送,有则发送短信到头的手机里.这里我直说httpclient方式的get请求方式,并且已经有方式的短信的接口了,所以只要再加上参 ...
- hdu 1059 Dividing
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...
- html标题上加上小图标
一般网站标题上都会有小图标,后面跟上文字,实现代码如下: <link rel = "Shortcut Icon" href="images/nav_logo.ico ...
- js 数组(Array)
一.数组 稠密数组(非稀疏数组) 稀疏数组 二.数组的添加和删除 我们已经常见过添加数组元素最简单的方法:为新索引赋值;也可以使用push()方法在数组末尾增加一个或者多个元素: a = []; a. ...
- block和split的理解
两者是从不同的角度来定义的:HDFS以固定大小的block为基本单位存储数据(分布式文件系统,实际存储角度,物理存储单位),而MapReduce以split作为处理单位(编程模型角度,逻辑单位). 对 ...