ID3算法
转自:http://blog.sina.com.cn/s/blog_6e85bf420100ohma.html
信息熵就是一组数据包含的信息,概率的度量。一组数据越有序信息熵也就越低,极端时如果一组数据中只有一个非0,其它都是0,那么熵等于0,因为只有可能是这个非0的情况发生,它给人们的信息已经确定了,或者说不含有任何信息了,因为信息熵含量为0。一组数据越无序信息熵也就越高,极端时如果一组数据均匀分布,那么它的熵最大,因为我们不知道那种情况发生的概率大些。假如一组数据由{d1,d2,...,dn}构成,其和是sum,那么求信息熵的公式是。
分类预测算法属于有指导学习,方法是通过训练数据,按照参考属性对目标属性的依赖程度对参考属性分级别处理,这种分级别处理体现在创建决策树,目的是通过生成的判别树,产生规则,用来判断以后的数据。以如下数据为例:
共14条记录,目标属性是,是否买电脑,共有两个情况,yes或者no。参考属性有4种情况,分别是,age,income,student,credit_rating。属性age有3种取值情况,分别是,youth,middle_aged,senior,属性income有3种取值情况,分别是,high,medium,low,属性student有2种取值情况,分别是,no,yes,属性credit_rating有2种取值情况,分别是fair,excellent。我们先求参考属性的信息熵:
,式中的5表示5个no,9表示9个yes,14是总的记录数。接下来我们求各个参考属性在取各自的值对应目标属性的信息熵,以属性age为例,有3种取值情况,分别是youth,middle_aged,senior,先考虑youth,youth共出现5次,3次no,2次yes,于是信息熵:
类似得到middle_aged和senior的信息熵,分别是:0和0.971。整个属性age的信息熵应该是它们的加权平均值:
。下面引入信息增益(information
gain)这个概念,用Gain(D)表示,该概念是指信息熵的有效减少量,该量越高,表明目标属性在该参考属性那失去的信息熵越多,那么该属性越应该在决策树的上层(如果不好理解,可以用极限的方法,即假如在age属性上,当为youth时全部是on,当为middle时也全部是no,当为senior时全不是yes,那么Hage(D)=0)。,类似可以求出Gain(income)=0.029,Gain(stduent)=0.151,Gain(credit_rating)=0.048。最大值为Gain(age),所以首先按照参考属性age,将数据分为3类,如下:
然后分别按照上面的方法递归的分类。递归终止的条件是,1,当分到某类时,目标属性全是一个值,如这里当年龄取middle_aged时,目标属性全是yes。2,当分到某类时,某个值的比例达到了给定的阈值,如这里当年龄取youth时,有60%的是no,当然实际的阈值远远大于60%。
ID3算法的更多相关文章
- 决策树ID3算法的java实现(基本试用所有的ID3)
已知:流感训练数据集,预定义两个类别: 求:用ID3算法建立流感的属性描述决策树 流感训练数据集 No. 头痛 肌肉痛 体温 患流感 1 是(1) 是(1) 正常(0) 否(0) 2 是(1) 是(1 ...
- 数据挖掘之决策树ID3算法(C#实现)
决策树是一种非常经典的分类器,它的作用原理有点类似于我们玩的猜谜游戏.比如猜一个动物: 问:这个动物是陆生动物吗? 答:是的. 问:这个动物有鳃吗? 答:没有. 这样的两个问题顺序就有些颠倒,因为一般 ...
- 决策树 -- ID3算法小结
ID3算法(Iterative Dichotomiser 3 迭代二叉树3代),是一个由Ross Quinlan发明的用于决策树的算法:简单理论是越是小型的决策树越优于大的决策树. 算法归 ...
- 机器学习笔记----- ID3算法的python实战
本文申明:本文原创,如有转载请申明.数据代码来自实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. Hell ...
- 决策树-预测隐形眼镜类型 (ID3算法,C4.5算法,CART算法,GINI指数,剪枝,随机森林)
1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? ...
- 决策树笔记:使用ID3算法
决策树笔记:使用ID3算法 决策树笔记:使用ID3算法 机器学习 先说一个偶然的想法:同样的一堆节点构成的二叉树,平衡树和非平衡树的区别,可以认为是"是否按照重要度逐渐降低"的顺序 ...
- ID3算法 决策树的生成(2)
# coding:utf-8 import matplotlib.pyplot as plt import numpy as np import pylab def createDataSet(): ...
- ID3算法 决策树的生成(1)
# coding:utf-8 import matplotlib.pyplot as plt import numpy as np import pylab def createDataSet(): ...
- 决策树的基本ID3算法
一 ID3算法的大致思想 基本的ID3算法是通过自顶向下构造决策树来进行学习的.我们首先思考的是树的构造从哪里开始,这就涉及到选择属性进行树的构造了,那么怎样选择属性呢?为了解决这个问题,我们使用统 ...
- Python实现ID3算法
自己用Python写的数据挖掘中的ID3算法,现在觉得Python是实现算法的最好工具: 先贴出ID3算法的介绍地址http://wenku.baidu.com/view/cddddaed0975f4 ...
随机推荐
- [Linux] 取得服务器版本
1) 登录到服务器执行 lsb_release -a ,即可列出所有版本信息,例如: [root@3.5.5Biz-46 ~]# lsb_release -a LSB Version: 1.3 Dis ...
- win7-32 系统 + VS2010 配置 glew
网上下载的程序,运行时报错: C1083: 无法打开包括文件:“gl\glew.h”: No such file or directory. 百度一下,发现需要配置 glew 库. 方法如下: 下载 ...
- iOS开发资料链接
ios开发中文文档了 http://developer.apple.com/library/ios/#referencelibrary/GettingStarted/RoadMapiOSCh/chap ...
- CRC校验(转)
CRC即循环冗余校验码(Cyclic Redundancy Check[1] ):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定.循环冗余检查(CRC)是一种数据 ...
- 关于移动端1px边框问题
<div class="z_nei_list"> <div class="z_name_left font-size3">身份证号:&l ...
- hdu 1203 概率+01背包
I NEED A OFFER! Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Sub ...
- SpringMyBatis解析2-SqlSessionFactoryBean
通过分析整合示例中的配置文件,我们可以知道配置的bean其实是成树状结构的,而在树的最顶层是类型为org.mybatis.spring.SqlSessionFactoryBean的bean,它将其他相 ...
- Codeforces Edu3 E. Minimum spanning tree for each edge
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- jQuery实现等比例缩放大图片
在布局页面时,有时会遇到大图片将页面容器“撑破”的情况,尤其是加载外链图片(通常是通过采集的外站的图片).那么本文将为您讲述使用jQuery如何按比例缩放大图片,让大图片自适应页面布局. 通常我们 ...
- Dijkstra+计算几何 POJ 2502 Subway
题目传送门 题意:列车上行驶40, 其余走路速度10.问从家到学校的最短时间 分析:关键是建图:相邻站点的速度是40,否则都可以走路10的速度.读入数据也很变态. #include <cstdi ...