POJ1769 Minimizing maximizer(DP + 线段树)
题目大概就是要,给一个由若干区间[Si,Ti]组成的序列,求最小长度的子序列,使这个子序列覆盖1到n这n个点。
- dp[i]表示从第0个到第i个区间且使用第i个区间,覆盖1到Ti所需的最少长度
- 对于Si=1的i区间dp值就是1了,要求的答案就是所有Ti=n的最小的dp值
转移就是,dp[i]=dp[j]+1,Si<=Tj<=Ti。不过枚举转移这样显然会T的,可以转化成RMQ来提升效率,用线段树成段更新成段查询即可,即维护1...n的覆盖所需区间的最小值,这样时间复杂度O(mlogn)。
#include<cstdio>
#include<cstring>
using namespace std;
#define MAXN 55555 inline int min(int a,int b){
if(a==) return b;
if(b==) return a;
if(a<b) return a;
return b;
} int tree[MAXN<<],tag[MAXN<<],N,x,y,z;
void update(int i,int j,int k){
if(x<=i && j<=y){
tree[k]=min(tree[k],z);
tag[k]=min(tag[k],z);
return;
}
if(tag[k]){
tree[k<<]=min(tree[k<<],tag[k]);
tree[k<<|]=min(tree[k<<|],tag[k]);
tag[k<<]=min(tag[k<<],tag[k]);
tag[k<<|]=min(tag[k<<|],tag[k]);
tag[k]=;
}
int mid=i+j>>;
if(x<=mid) update(i,mid,k<<);
if(y>mid) update(mid+,j,k<<|);
tree[k]=min(tree[k<<],tree[k<<|]);
}
int query(int i,int j,int k){
if(x<=i && j<=y){
return tree[k];
}
if(tag[k]){
tree[k<<]=min(tree[k<<],tag[k]);
tree[k<<|]=min(tree[k<<|],tag[k]);
tag[k<<]=min(tag[k<<],tag[k]);
tag[k<<|]=min(tag[k<<|],tag[k]);
tag[k]=;
}
int mid=i+j>>,res=;
if(x<=mid) res=min(res,query(i,mid,k<<));
if(y>mid) res=min(res,query(mid+,j,k<<|));
return res;
} int main(){
int n,m,a,b;
scanf("%d%d",&n,&m);
for(N=; N<n; N<<=);
int ans=;
for(int i=; i<m; ++i){
scanf("%d%d",&a,&b);
int res=;
if(a==) res=;
else{
x=a; y=b;
res=query(,N,);
if(res) ++res;
}
x=; y=b; z=res;
update(,N,);
if(b==n) ans=min(ans,res);
}
printf("%d\n",ans);
return ;
}
POJ1769 Minimizing maximizer(DP + 线段树)的更多相关文章
- POJ 1769 Minimizing maximizer (线段树优化dp)
dp[i = 前i中sorter][j = 将min移动到j位置] = 最短的sorter序列. 对于sorteri只会更新它右边端点r的位置,因此可以把数组改成一维的,dp[r] = min(dp[ ...
- ZOJ 3349 Special Subsequence 简单DP + 线段树
同 HDU 2836 只不过改成了求最长子串. DP+线段树单点修改+区间查最值. #include <cstdio> #include <cstring> #include ...
- hdu 3016 dp+线段树
Man Down Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- cf834D(dp+线段树区间最值,区间更新)
题目链接: http://codeforces.com/contest/834/problem/D 题意: 每个数字代表一种颜色, 一个区间的美丽度为其中颜色的种数, 给出一个有 n 个元素的数组, ...
- Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树)
Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树) 题目链接 题意 给定一个nm的矩阵,每行取2k的矩阵,求总 ...
- UVA-1322 Minimizing Maximizer (DP+线段树优化)
题目大意:给一个长度为n的区间,m条线段序列,找出这个序列的一个最短子序列,使得区间完全被覆盖. 题目分析:这道题不难想,定义状态dp(i)表示用前 i 条线段覆盖区间1~第 i 线段的右端点需要的最 ...
- [USACO2005][POJ3171]Cleaning Shifts(DP+线段树优化)
题目:http://poj.org/problem?id=3171 题意:给你n个区间[a,b],每个区间都有一个费用c,要你用最小的费用覆盖区间[M,E] 分析:经典的区间覆盖问题,百度可以搜到这个 ...
- POJ 3162 Walking Race 树形DP+线段树
给出一棵树,编号为1~n,给出数m 漂亮mm连续n天锻炼身体,每天会以节点i为起点,走到离i最远距离的节点 走了n天之后,mm想到知道自己这n天的锻炼效果 于是mm把这n天每一天走的距离记录在一起,成 ...
- 【uva1502/hdu4117-GRE Words】DP+线段树优化+AC自动机
这题我的代码在hdu上AC,在uva上WA. 题意:按顺序输入n个串以及它的权值di,要求在其中选取一些串,前一个必须是后一个的子串.问d值的和最大是多少. (1≤n≤2×10^4 ,串的总长度< ...
随机推荐
- [Android Pro] Android 4.1 使用 Accessibility实现免Root自动批量安装功能
reference to : http://www.infoq.com/cn/articles/android-accessibility-installing?utm_campaign=info ...
- 在VC中创建并调用DLL
转自:http://express.ruanko.com/ruanko-express_45/technologyexchange6.html 一.DLL简介 1.什么是DLL? 动态链接库英文为DL ...
- iPhone:4.7 5.5 4 3.5 对应的各个设备屏幕尺寸对应的像素及App上线信息
Shared App Information You can access these properties from the App Details page in the App Informat ...
- NYOJ题目1080年龄排序
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAtMAAAJVCAIAAACTf+6jAAAgAElEQVR4nO3dO1Lj3NbG8W8Szj0QYg ...
- NYOJ题目816它合法吗?
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAtIAAAJ0CAIAAACwTVMOAAAgAElEQVR4nO3du1LjzNo24O8kyDkQYh
- IE6中使用通用选择器模拟子选择器效果
IE6及更低版本不支持高级选择器:IE7有个bug,对于子选择器和相邻同胞选择器,如果父元素和子元素有HTML注释,会出问题. 下面我们使用通用选择器来模拟子选择器的效果. 原理:首先在所有后代上应用 ...
- Android之WebView学习
WebView常用方法 WebSettings 在使用WebView前我们都要进行相关的配置,常见的操作如下: WebSettings settings = mWebView.getSettings( ...
- 转:不再以讹传讹,GET和POST的真正区别
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历 前几天有人问我这个问题.我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用. 这个答案好像并不是他想要的.于是他继 ...
- Java集合源码学习(一)集合框架概览
>>集合框架 Java集合框架包含了大部分Java开发中用到的数据结构,主要包括List列表.Set集合.Map映射.迭代器(Iterator.Enumeration).工具类(Array ...
- PHP define()的用法
define()函数理解1(着重于作用的理解) define() 函数定义一个常量. 常量的特点: 常量类似变量,不同之处在于:在设定以后,常量的值无法更改常量名,不需要开头的美元符号 ($),作用域 ...