我们在一个母字符串中查找一个子字符串有很多方法。KMP是一种最常见的改进算法,它可以在匹配过程中失配的情况下,有效地多往后面跳几个字符,加快匹配速度。

当然我们可以看到这个算法针对的是子串有对称属性,如果有对称属性,那么就需要向前查找是否有可以再次匹配的内容。

在KMP算法中有个数组,叫做前缀数组,也有的叫next数组,每一个子串有一个固定的next数组,它记录着字符串匹配过程中失配情况下可以向前多跳几个字符,当然它描述的也是子串的对称程度,程度越高,值越大,当然之前可能出现再匹配的机会就更大。

这个next数组的求法是KMP算法的关键,但不是很好理解,我在这里用通俗的话解释一下,看到别的地方到处是数学公式推导,看得都蛋疼,这个篇文章仅贡献给不喜欢看数学公式又想理解KMP算法的同学。

1、用一个例子来解释,下面是一个子串的next数组的值,可以看到这个子串的对称程度很高,所以next值都比较大。

位置i

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

前缀next[i]

0

0

0

0

1

2

3

1

2

3

4

5

6

7

4

0

子串

a

g

c

t

a

g

c

a

g

c

t

a

g

c

t

g

申明一下:下面说的对称不是中心对称,而是中心字符块对称,比如不是abccba,而是abcabc这种对称。

(1)逐个查找对称串。

这个很简单,我们只要循环遍历这个子串,分别看前1个字符,前2个字符,3个... i个 最后到15个。

第1个a无对称,所以对称程度0

前两个ag无对称,所以也是0

依次类推前面0-4都一样是0

前5个agcta,可以看到这个串有一个a相等,所以对称程度为1前6个agctag,看得到ag和ag对成,对称程度为2

这里要注意了,想是这样想,编程怎么实现呢?

只要按照下面的规则:

a、当前面字符的前一个字符的对称程度为0的时候,只要将当前字符与子串第一个字符进行比较。这个很好理解啊,前面都是0,说明都不对称了,如果多加了一个字符,要对称的话最多是当前的和第一个对称。比如agcta这个里面t的是0,那么后面的a的对称程度只需要看它是不是等于第一个字符a了。

b、按照这个推理,我们就可以总结一个规律,不仅前面是0呀,如果前面一个字符的next值是1,那么我们就把当前字符与子串第二个字符进行比较,因为前面的是1,说明前面的字符已经和第一个相等了,如果这个又与第二个相等了,说明对称程度就是2了。有两个字符对称了。比如上面agctag,倒数第二个a的next是1,说明它和第一个a对称了,接着我们就把最后一个g与第二个g比较,又相等,自然对称成都就累加了,就是2了。

c、按照上面的推理,如果一直相等,就一直累加,可以一直推啊,推到这里应该一点难度都没有吧,如果你觉得有难度说明我写的太失败了。

当然不可能会那么顺利让我们一直对称下去,如果遇到下一个不相等了,那么说明不能继承前面的对称性了,这种情况只能说明没有那么多对称了,但是不能说明一点对称性都没有,所以遇到这种情况就要重新来考虑,这个也是难点所在。

(2)回头来找对称性

这里已经不能继承前面了,但是还是找对称成都嘛,最愚蠢的做法大不了写一个子函数,查找这个字符串的最大对称程度,怎么写方法很多吧,比如查找出所有的当前字符串,然后向前走,看是否一直相等,最后走到子串开头,当然这个是最蠢的,我们一般看到的KMP都是优化过的,因为这个串是有规律的。

在这里依然用上面表中一段来举个例子:

位置i=0到14如下,我加的括号只是用来说明问题:

(a g c t a g c )( a g c t a g c) t

我们可以看到这段,最后这个t之前的对称程度分别是:1,2,3,4,5,6,7,倒数第二个c往前看有7个字符对称,所以对称为7。但是到最后这个t就没有继承前面的对称程度next值,所以这个t的对称性就要重新来求。

这里首要要申明几个事实

1、t 如果要存在对称性,那么对称程度肯定比前面这个c 的对称程度小,所以要找个更小的对称,这个不用解释了吧,如果大那么t就继承前面的对称性了。

2、要找更小的对称,必然在对称内部还存在子对称,而且这个t必须紧接着在子对称之后。

如下图说明。

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

从上面的理论我们就能得到下面的前缀next数组的求解算法。

void SetPrefix(const char *Pattern, int prefix[])

{

int len=CharLen(Pattern);//模式字符串长度。

prefix[0]=0;

for(int i=1; i<len; i++)

{

int k=prefix[i-1];

//不断递归判断是否存在子对称,k=0说明不再有子对称,Pattern[i] != Pattern[k]说明虽然对称,但是对称后面的值和当前的字符值不相等,所以继续递推

while( Pattern[i] != Pattern[k]  &&  k!=0 )

k=prefix[k-1];     //继续递归

if( Pattern[i] == Pattern[k])//找到了这个子对称,或者是直接继承了前面的对称性,这两种都在前面的基础上++

prefix[i]=k+1;

else

prefix[i]=0;       //如果遍历了所有子对称都无效,说明这个新字符不具有对称性,清0

}

}

通过这个说明,估计能够理解KMP的next求法原理了,剩下的就很简单了。我自己也有点晕了,实在不喜欢那些数学公式,所以用形象逻辑思维方法总结了一下。

【经典算法】——KMP,深入讲解next数组的求解的更多相关文章

  1. 【转】【经典算法】——KMP,深入讲解next数组的求解

    前言 之前对kmp算法虽然了解它的原理,即求出P0···Pi的最大相同前后缀长度k:但是问题在于如何求出这个最大前后缀长度呢?我觉得网上很多帖子都说的不是很清楚,总感觉没有把那层纸戳破,后来翻看算法导 ...

  2. KMP,深入讲解next数组的求解(转载)

    前言 之前对kmp算法虽然了解它的原理,即求出P0···Pi的最大相同前后缀长度k:但是问题在于如何求出这个最大前后缀长度呢?我觉得网上很多帖子都说的不是很清楚,总感觉没有把那层纸戳破,后来翻看算法导 ...

  3. 经典算法 KMP算法详解

    内容: 1.问题引入 2.暴力求解方法 3.优化方法 4.KMP算法 1.问题引入 原始问题: 对于一个字符串 str (长度为N)和另一个字符串 match (长度为M),如果 match 是 st ...

  4. 经典算法系列--kmp

    前言 之前对kmp算法虽然了解它的原理,即求出P0···Pi的最大相同前后缀长度k:但是问题在于如何求出这个最大前后缀长度呢?我觉得网上很多帖子都说的不是很清楚,总感觉没有把那层纸戳破,后来翻看算法导 ...

  5. KMP算法之next数组的求解思路

    2.next数组的求解思路 本部分内容转自:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algo ...

  6. 经典算法题每日演练——第七题 KMP算法

    原文:经典算法题每日演练--第七题 KMP算法 在大学的时候,应该在数据结构里面都看过kmp算法吧,不知道有多少老师对该算法是一笔带过的,至少我们以前是的, 确实kmp算法还是有点饶人的,如果说红黑树 ...

  7. [经典算法题]寻找数组中第K大的数的方法总结

    [经典算法题]寻找数组中第K大的数的方法总结 责任编辑:admin 日期:2012-11-26   字体:[大 中 小] 打印复制链接我要评论   今天看算法分析是,看到一个这样的问题,就是在一堆数据 ...

  8. POJ 3461 Oulipo[附KMP算法详细流程讲解]

      E - Oulipo Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  9. KMP算法的时间复杂度与next数组分析

    一.什么是 KMP 算法 KMP 算法是一种改进的字符串匹配算法,用于判断一个字符串是否是另一个字符串的子串 二.KMP 算法的时间复杂度 O(m+n) 三.Next 数组 - KMP 算法的核心 K ...

随机推荐

  1. JSP-11-Servlet

    1 初识Servlet Ø  Servlet做了什么 本身不做业务 只接收请求并决定调用哪个JavaBean去处理请求 确定用哪个页面来显示处理返回的数据 Ø  Servlet 是什么 Servlet ...

  2. 关于IP地址的一个细节问题

    使用ip2long()和long2ip()函数把IP地址转成整型存放进数据库而非字符型.这几乎能降低1/4的存储空间.同时可以很容易对地址进行排序和快速查找;

  3. Turtlebot入门篇

    0.什么是TurtleBot? 我自己的理解就是:TurtleBot是一款移动机器人,就是主要研究让机器人自主决定应该想那个方向走,怎么绕过障碍物,最终到达目的地.与之对应还有很多机器人,比如goog ...

  4. Objective-C语言Foundation框架

    Mac OS X开发会使用Cocoa框架,它是一种支持应用程序提供丰富用户体验的框架,它实际上由:Foundation和Application Kit(AppKit)框架组成.iOS开发,会使用Coc ...

  5. JavaScript原型理解

    这东西我还不是很理解,但是把自己实践的过程记录下来,希望积累到一定程度,能自然而而然的理解了.很多东西我是这样慢慢理解的,明白为啥是那样子,真的很神奇哦.少说废话,开始吧. 可以先阅读这篇文章 fun ...

  6. s3c2440 移值u-boot-2016.03 第5篇 支持dm9000 识别

    1, 通过查看 /drivers/net/Makefile 发现想要编译上,需要添加宏 /include/configs/smdk2440.h 中添加 #define CONFIG_DRIVER_DM ...

  7. CSS 笔记一(Selectors/ Backgrounds/ Borders/ Margins/ Padding/ Height and Width)

    Selectors/ Backgrounds/ Borders/ Margins/ Padding/ Height and Width CSS Introduction: CSS stands for ...

  8. php curl的使用

    我们来采集一个页面,通常情况下,我们会使用file_get_contents()函数来获取: <?php $str = file_get_contents('http://www.baidu.c ...

  9. 浅谈文本溢出省略号代表修剪text-overflow

    一.示例 图片显示: HTML结构: CSS样式: 注意: CSS3 text-overflow 属性规定当文本溢出包含元素时发生的事情,其中 所有浏览器都支持 white-space 属性.  示例 ...

  10. 在mysql数据库原有字段后增加新内容

    update table set user=concat(user,$user) where xx=xxx; [注释]这个语法要求原来的字段值不能为null(可以为空字符''):