建立方程组消元,结果为2 ^(自由变元的个数) - 1

采用高斯消元求矩阵的秩

方法一:

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<utility>
using namespace std;
typedef long long LL;
const int N = 108, INF = 0x3F3F3F3F;
const double eps = 1e-8;
int a[N][N]; template<typename T>
int gauss_jordan(T A[N][N], int n, int m){
int i, c;
for(i = 0, c = 0; i < n && c < m; i++, c++){
int r = i;
for(int j = i + 1; j < n; j++){
if(A[j][c]){
r = j;
break;
}
}
if(A[r][c] == 0){
i--;
continue;
}
if(r != i){
for(int j = 0; j <= m; j++){
swap(A[r][j], A[i][j]);
}
}
for(int k = 0; k < n; k++){
if(k != i && A[k][c]){
for(int j = m; j >= c; j--){
A[k][j] ^= A[i][j];
}
}
}
}
return i;
} const int MAXN = 508;
int prime[MAXN];
bool vis[MAXN];
int getPrime(int n){//求1~n的素数
int tot=0;
memset(vis,0,sizeof(vis));
for(int i=2;i<=n;i++){
if(!vis[i]){
prime[tot++]=i;
}
for(int j=0;j<tot&&i*prime[j]<=n;j++){
vis[i*prime[j]]=true;
if(i%prime[j]==0){//让每个合数仅被其最小的质数筛去
break;
}
}
}
return tot;
} int main(){
int cnt = getPrime(500);
int t;
cin>>t;
while(t--){
memset(a, 0, sizeof(a));
int n;
cin>>n;
for(int j = 0; j < n; j++){
LL x;
cin>>x;
for(int i = 0; i < cnt && prime[i]<= x; i++){
while(x % prime[i] == 0){
a[i][j] ^= 1;
x /= prime[i];
}
}
}
LL ans = n - gauss_jordan(a, cnt, n);
//cout<<ans<<" ans\n";
cout<<((1ll << ans) - 1)<<'\n';
} return 0;
}

方法2:

消元后非0向量的行数即为矩阵的秩,但开始出现问题一直WA,后来在消元变成上三角矩阵后,从最后一行起,找出第一个非0元素,向上消元。

应该有更巧妙的写法避免这个问题。

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<utility>
using namespace std;
typedef long long LL;
const int N = 108, INF = 0x3F3F3F3F;
const double eps = 1e-8;
int a[N][N]; template<typename T>
void gauss_jordan(T A[N][N], int n, int m){
for(int i = 0; i < n; i++){
int r = i;
for(int j = i + 1; j < n; j++){
if(A[j][i]){
r = j;
break;
}
}
if(A[r][i] == 0){
continue;
}
if(r != i){
for(int j = 0; j <= m; j++){
swap(A[r][j], A[i][j]);
}
}
for(int k = i + 1; k < n; k++){
if(k != i && A[k][i]){
for(int j = m; j >= i; j--){
A[k][j] ^= A[i][j];
}
}
}
}
for(int i = n - 1; i > 0; i--){
for(int j = 0; j < m; j++){
if(A[i][j]){
for(int k = i - 1; k >= 0; k--){
if(A[k][j]){
for(int l = j; l <= m; l++){
A[k][l] ^= A[i][l];
}
}
}
break;
}
}
} } const int MAXN = 508;
int prime[MAXN];
bool vis[MAXN];
int getPrime(int n){//求1~n的素数
int tot=0;
memset(vis,0,sizeof(vis));
for(int i=2;i<=n;i++){
if(!vis[i]){
prime[tot++]=i;
}
for(int j=0;j<tot&&i*prime[j]<=n;j++){
vis[i*prime[j]]=true;
if(i%prime[j]==0){//让每个合数仅被其最小的质数筛去
break;
}
}
}
return tot;
} int main(){
int cnt = getPrime(500);
int t;
cin>>t;
while(t--){
memset(a, 0, sizeof(a));
int n;
int row = 0;
cin>>n;
for(int j = 0; j < n; j++){
LL x;
cin>>x;
for(int i = 0; i < cnt && prime[i]<= x; i++){
while(x % prime[i] == 0){
row = max(row, i);
a[i][j] ^= 1;
x /= prime[i];
}
}
}
row++;
gauss_jordan(a, row, n);
int rk = 0;
for(int i = 0; i < row; i++){
for(int j = 0; j < n; j++){
if(a[i][j]){
rk++;
break;
}
}
}
n -= rk; cout<<((1ll << n) - 1)<<'\n';
} return 0;
}

  

UVA11542 Square(高斯消元 异或方程组)的更多相关文章

  1. UVA 11542 Square 高斯消元 异或方程组求解

    题目链接:点击打开链接 白书的例题练练手. . . P161 #include <cstdio> #include <iostream> #include <algori ...

  2. BZOJ.1923.[SDOI2010]外星千足虫(高斯消元 异或方程组 bitset)

    题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #i ...

  3. Tsinsen-A1488 : 魔法波【高斯消元+异或方程组】

    高斯消元. 自己只能想出来把每一个点看成一个变量,用Xi表示其状态,这样必定TLE,n^2 个变量,再加上3次方的高斯消元(当然,可以用bitset压位). 正解如下: 我们把地图划分成一个个的横条和 ...

  4. UVa 11542 (高斯消元 异或方程组) Square

    书上分析的太清楚,我都懒得写题解了.=_=|| #include <cstdio> #include <cstring> #include <cmath> #inc ...

  5. POJ.1830.开关问题(高斯消元 异或方程组)

    题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...

  6. 【高斯消元解xor方程组】BZOJ2466-[中山市选2009]树

    [题目大意] 给出一棵树,初始状态均为0,每反转一个节点的状态,相邻的节点(父亲或儿子)也会反转,问要使状态均为1,至少操作几次? [思路] 一场大暴雨即将来临,白昼恍如黑夜!happy! 和POJ1 ...

  7. poj1830(高斯消元解mod2方程组)

    题目链接:http://poj.org/problem?id=1830 题意:中文题诶- 思路:高斯消元解 mod2 方程组 有 n 个变元,根据给出的条件列 n 个方程组,初始状态和终止状态不同的位 ...

  8. POJ 1222 EXTENDED LIGHTS OUT(高斯消元解XOR方程组)

    http://poj.org/problem?id=1222 题意:现在有5*6的开关,1表示亮,0表示灭,按下一个开关后,它上下左右的灯泡会改变亮灭状态,要怎么按使得灯泡全部处于灭状态,输出方案,1 ...

  9. UVA 11542 - Square(高斯消元)

    UVA 11542 - Square 题目链接 题意:给定一些数字.保证这些数字质因子不会超过500,求这些数字中选出几个,乘积为全然平方数,问有几种选法 思路:对每一个数字分解成质因子后.发现假设要 ...

随机推荐

  1. [CQOI2011]动态逆序对

    (又是一道树套树……自己真是玩疯了……) (题意略) 从网上也看过题解,好像解法很多……比如CDQ+树状数组,树状数组套主席树,树状数组套平衡树……我用的是树状数组套splay. (我会说是因为我不会 ...

  2. TextMate 小小心得

    在Vim.Emacs之间纠结了很久之后,却选择了TextMate P.S. 为何Emacs和Vim被称为两大神器 中文的资料不是很多,一狠心,找了James Edward Gray II的TextMa ...

  3. ubuntu14.04 server 安装vmware worktation 12

    0) Do the basic system installation of Ubuntu 14.04 LTS (Server or Desktop) 1) wget the installer wg ...

  4. 【Eclipse】eclipse che 协作开发

    http://www.eclipse.org/che/ http://blog.csdn.net/ccfeng2008/article/details/50881024 http://www.osch ...

  5. JavaScript Window对象属性

    window 代表浏览器中一个打开的窗口. Window的属性 属性 描述 closed 获取引用窗口是否已关闭. defaultStatus 设置或获取要在窗口底部的状态栏上显示的缺省信息. dia ...

  6. C#之Textbox实现自动提示容、自动补齐内容

    今发现一个博文挺有意思,实现的功能很有意思但方法却很简单,特此转过来,以备以后查阅. 先上原博文地址:http://blog.csdn.net/testcs_dn/article/details/45 ...

  7. SQL Server 中几种常见的约束关系

    1.创建唯一约束 当表中已创建主键,但又要保证其他数据列的值唯一时,可以使用唯一约束,并且唯一约束允许NULL值(只有一个) (1)展开指定的数据库: (2)右击要创建唯一约束的表,在弹出的快捷菜单中 ...

  8. Appium+Robotframework实现Android应用的自动化测试-1:Appium在Windows中的安装

    让我们开始在Windows中开始安装Appium吧,Appium在OS X中的具体安装后面的文章会介绍. 另外,官网上说先要装Node.js,还要装Apache Ant和Apache Maven,Gi ...

  9. iOS UILocalNotification 每2周,每两个月提醒

    iOS 的UILocalNotification提醒提供了默认的重复频率,比如,一天,一个星期等等,但是对于非标准的频率,比如每,2周,每2个月,无法重复提醒. 我们的思路是在应用程序开始时,把即将发 ...

  10. iis 错误解决汇集

    1. Windows7,VS2013,网站发布到IIS,访问发生如下错误: HTTP 错误 500.21 - Internal Server Error处理程序“NickLeeCallbackHand ...