The CLUSTERED BY and SORTED BY creation commands do not affect how data is inserted into a table – only how it is read. This means that users must be careful to insert data correctly by specifying the number of reducers to be equal to the number of buckets, and using CLUSTER BY and SORT BY commands in their query.

In general, distributing rows based on the hash will give you a even distribution(均匀分布) in the buckets.

set mapred.reduce.tasks = ;

set hive.enforce.bucketing = true;

CREATE TABLE user_info_bucketed(user_id BIGINT, firstname STRING, lastname STRING)

COMMENT 'A bucketed copy of user_info'

PARTITIONED BY(ds STRING)

CLUSTERED BY(user_id) INTO BUCKETS;

INSERT into TABLE user_info_bucketed

PARTITION (ds='2015-07-25')

values

(100,'python','postgresql'), (101,'python','postgresql'), (102,'python','postgresql'), (103,'python','postgresql'), (104,'python','postgresql'), (105,'python','postgresql'), (106,'python','postgresql'), (107,'python','postgresql'), (108,'python','postgresql'), (109,'python','postgresql'), (111,'python','postgresql'), (112,'python','postgresql'), (113,'python','postgresql'), (114,'python','postgresql'), (115,'python','postgresql'), (116,'python','postgresql'), (117,'python','postgresql'), (118,'python','postgresql'), (119,'python','postgresql'), (120,'python','postgresql'), (121,'python','postgresql'), (122,'python','postgresql'), (2000,'R','Oracle'), (2001,'R','Oracle'), (2002,'R','Oracle'), (2003,'R','Oracle'), (2004,'R','Oracle'), (2005,'R','Oracle'), (2006,'R','Oracle'), (2007,'R','Oracle'), (2008,'R','Oracle'), (2009,'R','Oracle'), (2010,'R','Oracle'), (2011,'R','Oracle'), (2012,'R','Oracle'), (2013,'R','Oracle'), (2014,'R','Oracle'), (2015,'R','Oracle'), (2016,'R','Oracle'), (2017,'R','Oracle'), (2018,'R','Oracle'), (2019,'R','Oracle'), (2020,'R','Oracle'), (2030,'R','Oracle'), (2040,'R','Oracle'), (2050,'R','Oracle');

[spark01 ~]$ hadoop fs -ls -R /user/hive/warehouse/test.db/user_info_bucketed
drwxrwxrwx   - huai supergroup          0 2015-07-20 22:46 /user/hive/warehouse/test.db/user_info_bucketed/ds=2015-07-25
-rwxrwxrwx   3 huai supergroup        266 2015-07-20 22:46 /user/hive/warehouse/test.db/user_info_bucketed/ds=2015-07-25/000000_0
-rwxrwxrwx   3 huai supergroup        288 2015-07-20 22:46 /user/hive/warehouse/test.db/user_info_bucketed/ds=2015-07-25/000001_0
-rwxrwxrwx   3 huai supergroup        266 2015-07-20 22:46 /user/hive/warehouse/test.db/user_info_bucketed/ds=2015-07-25/000002_0

[spark01 ~]$ hadoop fs -cat /user/hive/warehouse/test.db/user_info_bucketed/ds=2015-07-25/000000_0 |sort
102pythonpostgresql
105pythonpostgresql
108pythonpostgresql
111pythonpostgresql
114pythonpostgresql
117pythonpostgresql
120pythonpostgresql
2001ROracle
2004ROracle
2007ROracle
2010ROracle
2013ROracle
2016ROracle
2019ROracle
2040ROracle
[spark01 ~]$ hadoop fs -cat /user/hive/warehouse/test.db/user_info_bucketed/ds=2015-07-25/000001_0 |sort
100pythonpostgresql
103pythonpostgresql
106pythonpostgresql
109pythonpostgresql
112pythonpostgresql
115pythonpostgresql
118pythonpostgresql
121pythonpostgresql
2002ROracle
2005ROracle
2008ROracle
2011ROracle
2014ROracle
2017ROracle
2020ROracle
2050ROracle
[spark01 ~]$ hadoop fs -cat /user/hive/warehouse/test.db/user_info_bucketed/ds=2015-07-25/000002_0 |sort
101pythonpostgresql
104pythonpostgresql
107pythonpostgresql
113pythonpostgresql
116pythonpostgresql
119pythonpostgresql
122pythonpostgresql
2000ROracle
2003ROracle
2006ROracle
2009ROracle
2012ROracle
2015ROracle
2018ROracle
2030ROracle

Hive桶列BucketedTables的更多相关文章

  1. hive 桶相关特性分析

    1. hive 桶相关概念     桶(bucket)是指将表或分区中指定列的值为key进行hash,hash到指定的桶中,这样可以支持高效采样工作.     抽样( sampling )可以在全体数 ...

  2. Hive 桶的分区

    (一).桶的概念: 对于每一个表(table)或者分区, Hive可以进一步组织成桶(没有分区能分桶吗?),也就是说桶是更为细粒度的数据范围划分.Hive也是 针对某一列进行桶的组织.Hive采用对列 ...

  3. hive桶表好处

    对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分.Hive也是针对某一列进行桶的组织.Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记 ...

  4. hive 桶表

    转自:https://blog.csdn.net/csdnliuxin123524/article/details/81052974 桶表(bucket table): 原理: 分区表是按照经常查询的 ...

  5. hive 更改列的位置时遇到的问题

    hive > desc formatted tb_fq; OK col_name data_type comment # col_name data_type comment name stri ...

  6. hive桶表

    创建桶表,提高查询速度, 下免.tom'jerry'scott如果他们经过hash计算,得到的hash值一样,则放到桶一个表中. 创建桶表 指明桶的分桶条件,以sname分桶;分为5个桶

  7. hive设置列头(永久模式)

    到hive目录下的hive-site <property> <name>hive.cli.print.header</name> <value>true ...

  8. Hive 学习之路(五)—— Hive 分区表和分桶表

    一.分区表 1.1 概念 Hive中的表对应为HDFS上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大. 分区为HDFS上表目录的子目录,数据按照分区存储在子目录中.如 ...

  9. Hive 系列(五)—— Hive 分区表和分桶表

    一.分区表 1.1 概念 Hive 中的表对应为 HDFS 上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大. 分区为 HDFS 上表目录的子目录,数据按照分区存储在子 ...

随机推荐

  1. 判断radiobutton是否被选中

    <tr> <td class="label">是否显示:</td> <td> <?php if($cates_data[0][ ...

  2. W/MessageQueue: Handler (android.os.Handler) {4241f8f8} sending message to a Handler on a dead thread

    缩略信息是: sending message to a Handler on a dead thread 我是用IntentService时报的 稍微纤细一点儿的信息是: Handler (andro ...

  3. sh脚本循环

    sh for循环 for File in 1 2 3 4 5 do echo $File done sh for多重循环 for image_size_input in 160 140 120 100 ...

  4. python with妙用

    class aa(): def bb(self): print("hhhh") return "hello world" def __enter__(self) ...

  5. EntityFramework定向加载实体

    Reference()和Collection() 方法 IList<Student> studList = context.Students.ToList<Student>() ...

  6. android中文api(79)——Gallery

    前言 本章内容是 android.widget.Gallery,版本为Android 2.3 r1,翻译来自"henly.zhang",欢迎大家访问他的博客:http://www. ...

  7. C++測量一段代码的执行时时间

    在电脑里发现的一段C++代码,尽管自己不做C++开发了.还是贴出来,给须要的人 LARGE_INTEGER BegainTime ; LARGE_INTEGER EndTime ; LARGE_INT ...

  8. samtools faidx 命令处理fasta序列

    samtools faidx 能够对fasta 序列建立一个后缀为.fai 的文件,根据这个.fai 文件和原始的fastsa文件, 能够快速的提取任意区域的序列 用法: samtools faidx ...

  9. 【Java面试题】16 静态代码块,main方法,构造代码块,构造方法

    public class HelloB extends HelloA{ public HelloB() { System.out.println("HelloB"); } { Sy ...

  10. 【Windows】win10应用商店被删后恢复方法!

    以管理员身份运行PowerShell,输入以下命令后回车(可直接复制粘贴): Get-AppxPackage -AllUsers| Foreach {Add-AppxPackage -DisableD ...