【poj2068】Nim
Description
给你\(S\)个石子,有\(2n\)个人分成两队,编号为奇数的一队,编号为偶数的一队,\(2n\)个人按照编号从小到大的顺序拿石子,所有人都拿过了就再从\(1\)号轮,编号为\(i\)的人一次可以拿\(x\in[1,a[i]]\)颗,拿到最后一颗石子的队伍输,判断当前局面是否先手必胜
Solution
emmm今天做了几道sg函数的题然后感觉这玩意很神秘
除了转化成"有向图游戏"那样的形式之后用异或和和\(mex\)求\(sg\)以外,还有的题中\(sg\)的取值只有\(0\)和\(1\)两种,可以直接判断是否存在一个后继局面的\(sg\)值为\(0\)(也就是先手必败态),如果有就说明当前局面\(sg\)值为\(1\)(也就是先手必胜态),因为根据P-position(先败)和N-position(先胜)的定义,可以移动到P-position的局面是N-position,所以直接这么判就好了
当然你也还是可以转成 一个有向图游戏,只要后继局面中有\(0\),那么取一下\(mex\)就只能是\(1\)了,一样的
这题中比较容易想到的就是用"当前是谁准备取"和"当前还剩多少石子"来表示一个局面,那直接大力记忆化搜索就好了,边界条件就是如果当前没有石子了,那么是先手必胜态
最后就是求\(nxt\)的时候模数记得是\(2n\)而不是\(n\)。。。
(一开始陷入了一个误区。。就是觉得每个人的取石子上限不同,所以不是一个ICG,但其实ICG中只是要求移动集合(在这题里也就是能移哪些石子)不与选手相关,并没有限制具体操作)
代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=9000;
int f[60][N],a[60];
int vis[N];
int n,m,S,mark;
int nxt(int x){return (x+1)%(2*n)==0?2*n:(x+1)%(2*n);}
int sg(int x,int stone){
if (f[x][stone]!=-1) return f[x][stone];
if (stone==0) return f[x][stone]=1;
int tmp=nxt(x);
for (int i=1;i<=a[x]&&i<=stone;++i){
if (!sg(tmp,stone-i))
return f[x][stone]=1;
}
return f[x][stone]=0;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
while (1){
scanf("%d",&n);
if (n==0) break;
memset(f,-1,sizeof(f));
scanf("%d",&S);
mark=0;
for (int i=1;i<=n*2;++i)scanf("%d",a+i);
printf("%d\n",sg(1,S));
}
}
【poj2068】Nim的更多相关文章
- 【HDU3032】Nim or not Nim?(博弈论)
[HDU3032]Nim or not Nim?(博弈论) 题面 HDU 题解 \(Multi-SG\)模板题 #include<iostream> #include<cstdio& ...
- 【BZOJ2819】Nim 树状数组+LCA
[BZOJ2819]Nim Description 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可 ...
- 洛谷 P2197 【模板】nim游戏 解题报告
P2197 [模板]nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以 ...
- 【bzoj2819】Nim
Description 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游 ...
- 【bzoj2819】Nim DFS序+树状数组+倍增LCA
题目描述 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游戏是有必胜策略 ...
- 【bzoj2819】 Nim
www.lydsy.com/JudgeOnline/problem.php?id=2819 (题目链接) 题意 动态树上路径异或和. Solution Nim取石子游戏的sg值就是每堆石子的异或和,所 ...
- 【POJ】【2068】Nim
博弈论/DP 这是Nim?这不是巴什博奕的变形吗…… 我也不会捉啊,不过一看最多只有20个人,每人最多拿16个石子,总共只有8196-1个石子,范围好像挺小的,嗯目测暴力可做. so,记忆化搜索直接水 ...
- 【POJ】【2975】Nim
博弈论 我哭……思路错误WA了6次?(好像还有手抖点错……) 本题是要求Nim游戏的第一步必胜策略有几种. 一开始我想:先全部异或起来得到ans,从每个比ans大的堆里取走ans个即可,答案如此累计… ...
- 【BZOJ】【2819】NIM
这题……咋说捏,其实是一道披着博弈论外衣的树上操作问题…… 随便用dfs序或者树链剖分转成序列,然后查询路径上的所有点的NIM和(异或和)就行了,毕竟除了是在树上以外,就是裸的NIM问题. 树链剖分: ...
随机推荐
- Git生成SSH密钥
git config --global user.name "yangjianliang"配置用户名 git config --global user.email "52 ...
- 时序数据库InfluxDB
在系统服务部署过后,线上运行服务的稳定性是系统好坏的重要体现,监控系统状态至关重要,经过调研了解,时序数据库influxDB在此方面表现优异. influxDB介绍 时间序列数据是以时间字段为每行数据 ...
- Open vSwitch for CentOS
原文发表于cu:2016-06-02 本文属于重发,ovs当前的安装方式可能略有不同. 参考文档: 官方文档: http://openvswitch.org/support/dist-docs-2.5 ...
- Linux内核学习笔记(7)--完全公平调度(CFS)
一.完全公平调度算法 完全公平调度 CFS 的出发点基于一个简单的理念:进程调度的效果应该如同系统具备一个理想中的完美多任务处理器.在这种系统中,每个进程能够获得 1/n 的处理器时间(n 为可运行进 ...
- sqli-labs学习笔记 DAY2
DAY2 sqli-labs lesson 2 手工注入 URL:http://localhost/sqli-labs-master/Less-2/ Parameter:id 注入点检测:id=2;– ...
- 第六次ScrumMeeting博客
第六次ScrumMeeting博客 本次会议于10月31日(二)22时整在3公寓725房间召开,持续15分钟. 与会人员:刘畅.辛德泰.窦鑫泽.张安澜.赵奕.方科栋. 除了汇报任务外,窦鑫泽同学还就前 ...
- 2016-2017 ACM-ICPC, NEERC, Northern Subregional Contest Problem F. Format
题目来源:http://codeforces.com/group/aUVPeyEnI2/contest/229510 时间限制:1s 空间限制:512MB 题目大意: 给定一个字符串,使用%[...] ...
- GIT团队实战博客
项目要求 组长博客 遇到的困难及解决办法 组员1(组长):王彬 遇到的困难 在团队任务分工的时候没有充分照顾到所有人,导致队员们的工作量不均. 现场编程时间不够 解决办法 在此对组员们表示抱歉,由于 ...
- ext4.1入门
ExtJS简介 Ext是一个Ajax框架,用于在客户端创建丰富多彩的web应用程序界面,是在Yahoo!UI的基础上发展而来的.官方网址:www.sencha.com ExtJS是一个用来开发前端应用 ...
- IT小小鸟 读书笔记
讲真的,整本书我并没有看完,翻阅了一下,然后小小的借鉴了一下! 首先设计你自己的进度条 进度条的设计是一个很多人都知道的故事:同样的耗时,如果不给任何进度提示,只是在完成之后才弹出一个完成消息,中间没 ...