51nod 1277字符串中的最大值(拓展kmp)
#include <iostream>
#include <cstring>
using namespace std;
const int maxn = 1e6 + ;
char S[maxn];
int Next[maxn], extend[maxn];
void GetNext(char *T, int *Next){
int len = strlen(T);
Next[] = len;
int a, p;
for(int i = , j = -; i < len; i++, j--){
if(j < || i + Next[i-a] >= p){
if(j < ) p = i, j = ;
while(p < len && T[p] == T[j])
p++, j++;
Next[i] = j;
a = i;
} else Next[i] = Next[i-a];
}
}
void GetExtend(char *S, char *T, int *extend, int *Next){
GetNext(T, Next);
int a, p;
int slen = strlen(S), tlen = strlen(T);
for(int i = , j = -; i < slen; i++, j--){
if(j < || i + Next[i-a] >= p){
if(j < ) p = i, j = ;
while(p < slen && j < tlen && S[p] == T[j]) p++, j++;
extend[i] = j;
a = i;
} else extend[i] = Next[i-a];
}
}
int Num[maxn];
int main(){
cin>>S;
int len = strlen(S);
GetNext(S, Next);
for(int i = ; i < len; i++) Num[Next[i]]++;
long long ans = , n = ;
for(int i = len; i >= ; i--){
n += Num[i];
ans = max(ans, n*i);
}
cout<<ans<<endl;
}
51nod 1277字符串中的最大值(拓展kmp)的更多相关文章
- 51NOD 1277 字符串中的最大值(KMP)
>>点击进入原题测试<< 思路:用KMP优化的暴力写了一遍,超时!没有充分利用KMP中next数组的性质. 首先这个题是肯定要用到KMP算法的,然后会有一个next[]数组. ...
- 51nod 1277 字符串中的最大值
题目链接 51nod 1277 字符串中的最大值 题解 对于单串,考虑多串的fail树,发现next数组的关系形成树形结构 建出next树,对于每一个前缀,他出现的次数就是他子树的大小 代码 #inc ...
- 51Nod 1277 字符串中的最大值(KMP,裸题)
1277 字符串中的最大值 题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 一个字符串的前缀是指包含该字符第一个字母的连续子串,例如: ...
- 51Nod 1277 字符串中的最大值 ( KMP && DP )
题意 : 一个字符串的前缀是指包含该字符第一个字母的连续子串,例如:abcd的所有前缀为a, ab, abc, abcd.给出一个字符串S,求其所有前缀中,字符长度与出现次数的乘积的最大值.例如:S ...
- 51nod 1292 字符串中的最大值V2(后缀自动机)
题意: 有一个字符串T.字符串S的F函数值可以如下计算:F(S) = L * S在T中出现的次数(L为字符串S的长度).求所有T的子串S中,函数F(S)的最大值. 题解: 求T的后缀自动机,然后所有每 ...
- hdu 4333"Revolving Digits"(KMP求字符串最小循环节+拓展KMP)
传送门 题意: 此题意很好理解,便不在此赘述: 题解: 解题思路:KMP求字符串最小循环节+拓展KMP ①首先,根据KMP求字符串最小循环节的算法求出字符串s的最小循环节的长度,记为 k: ②根据拓展 ...
- 51nod 1286 三段子串(树状数组+拓展kmp)
题意: 给定一个字符串S,找到另外一个字符串T,T既是S的前缀,也是S的后缀,并且在中间某个地方也出现一次,并且这三次出现不重合.求T最长的长度. 例如:S = "abababababa&q ...
- 拓展KMP算法详解
拓展KMP解决的问题是给两个串S和T,长度分别是n和m,求S的每一个后缀子串与T的最长公共前缀分别是多少,记作extend数组,也就是说extend[i]表示S[i,n-1](i从0开始)和T的最长公 ...
- 拓展kmp总结
借鉴自:https://blog.csdn.net/dyx404514/article/details/41831947 定义母串S,和子串T,设S的长度为n,T的长度为m,求T与S的每一个后缀的最长 ...
随机推荐
- 【LG4585】[FJOI2015]火星商店问题
[LG4585][FJOI2015]火星商店问题 题面 bzoj权限题 洛谷 \(Notice:\) 关于题面的几个比较坑的地方: "一天"不是一个操作,而是有0操作就相当于一天开 ...
- MySQL入门篇(四)之MySQL主从复制
一.MySQL主从复制原理 随机站点访问量的鞥集啊,单台的MySQL服务器压力也不断地增加,此时需要对MySQL进行优化,如果在MySQL优化无明显改善时期,可以使用高可用.主从复制.读写分离.分库分 ...
- superset 安装测试,基于windows 和 centos7.x
1.刚开始在windows平台测试搭建,报各种问题,搭建可以参考官网https://superset.incubator.apache.org/installation.html#deeper-sql ...
- [IOI2011]Race 点分治
[IOI2011]Race LG传送门 点分治板子题. 直接点分治统计,统计的时候开个桶维护下就好了. 注(tiao)意(le)细(hen)节(jiu). #include<cstdio> ...
- 区块链技术:每位CEO都应了解
区块链技术有可能成为一项广泛应用的突破性技术,像蒸汽机.电力或因特网那 样,改变整个社会和经济的运行方式. 对企业而言,信任至关重要.今天,我们基于信任,将钱存放在银行,通过电商企业 网购产品,并且依 ...
- JMeter学习工具简单介绍
JMeter学习工具简单介绍 一.JMeter 介绍 Apache JMeter是100%纯JAVA桌面应用程序,被设计为用于测试客户端/服务端结构的软件(例如web应用程序).它可以用来测试静态 ...
- [转]Git 撤销操作
二. Git撤消操作 12.1 修改最后一次提交 git commit --amend 1.新建一个文件 2.提交一个之前的更改 3.跟踪这个文件 4.跟前一次一起提交 提示你是否重新编辑提交说明,如 ...
- 前端之JavaScript(二)
一.概述 本篇主要介绍JavaScript的BOM和DOM操作,在前端之JavaScript(一)中介绍了JavaScript基础知识 1.1.BOM和DOM BOM(Browser Object M ...
- 微软职位内部推荐-Principal Group Program Manager
微软近期Open的职位: Standard job title: Principal Group Program Manager Discipline: Program Management Prod ...
- 转载笔记:DropDownList无限级分类(灵活控制显示形式)
主要使用递归实现,数据库结构: 最终样式: 1protected void Page_Load(object sender, EventArgs e) 2 { 3 if (!Pa ...