Description

Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is  popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow. 

Input

* Line 1: Two space-separated integers, N and M 
* Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular. 

Output

* Line 1: A single integer that is the number of cows who are considered popular by every other cow. 

题目大意:给n个点m条有向边,问有多少个点满足,所有其他点都有一条能到达它的路径。

思路:先用tarjan求强联通分量,缩点,形成树。若有且只有一个点(缩了之后)出度为0,那么所有其他点都能到达它(缩点之后形成的是一个树状结构,出度为0的点为根)。若不止一个点出度为零,说明答案为0(因为这些出度为0的点之间不能互相到达)。

代码(79MS):

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int MAXN = ;
const int MAXE = ; int outdeg[MAXN], pre[MAXN], lowlink[MAXN], sum[MAXN];
int head[MAXN], sccno[MAXN], ecnt, scc_cnt;
int to[MAXE], next[MAXE];
int n, m, dfs_clock;
int stk[MAXN], top; void init() {
memset(sum, , sizeof(sum));
memset(head, , sizeof(head));
memset(outdeg, , sizeof(outdeg));
ecnt = ;
scc_cnt = ;
dfs_clock = ;
} void add_edge(int u, int v) {
to[ecnt] = v; next[ecnt] = head[u]; head[u] = ecnt++;
} void dfs(int u) {//tarjan
pre[u] = lowlink[u] = ++dfs_clock;
stk[++top] = u;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(!pre[v]) {
dfs(v);
if(lowlink[u] > lowlink[v]) lowlink[u] = lowlink[v];
} else if(!sccno[v]) {
if(lowlink[u] > pre[v]) lowlink[u] = pre[v];
}
}
if(lowlink[u] == pre[u]) {
++scc_cnt;
while(true) {
int x = stk[top--];
sccno[x] = scc_cnt;
if(x == u) break;
}
}
} int solve() {
for(int i = ; i <= n; ++i)
if(!pre[i]) dfs(i);
for(int u = ; u <= n; ++u) {
++sum[sccno[u]];
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(sccno[u] == sccno[v]) continue;
++outdeg[sccno[u]];
}
}
int ans = ;
for(int i = ; i <= scc_cnt; ++i)
if(outdeg[i] == ) {
if(ans == ) ans = sum[i];
else return ;
}
return ans;
} int main() {
scanf("%d%d", &n, &m);
init();
while(m--) {
int a, b;
scanf("%d%d", &a, &b);
add_edge(a, b);
}
printf("%d\n", solve());
}

POJ 2186 Popular Cows(强联通+缩点)的更多相关文章

  1. POJ 2186 Popular Cows (强联通)

    id=2186">http://poj.org/problem? id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 655 ...

  2. POJ 2186 Popular Cows(强联通分量)

    题目链接:http://poj.org/problem?id=2186 题目大意:    每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种 ...

  3. poj 2186 Popular Cows (强连通分量+缩点)

    http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissi ...

  4. POJ 2186 Popular Cows(强连通分量缩点)

    题目链接:http://poj.org/problem?id=2186 题目意思大概是:给定N(N<=10000)个点和M(M<=50000)条有向边,求有多少个“受欢迎的点”.所谓的“受 ...

  5. POJ 2186 Popular Cows(Targin缩点)

    传送门 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31808   Accepted: 1292 ...

  6. 强连通分量分解 Kosaraju算法 (poj 2186 Popular Cows)

    poj 2186 Popular Cows 题意: 有N头牛, 给出M对关系, 如(1,2)代表1欢迎2, 关系是单向的且能够传递, 即1欢迎2不代表2欢迎1, 可是假设2也欢迎3那么1也欢迎3. 求 ...

  7. tarjan缩点练习 洛谷P3387 【模板】缩点+poj 2186 Popular Cows

    缩点练习 洛谷 P3387 [模板]缩点 缩点 解题思路: 都说是模板了...先缩点把有环图转换成DAG 然后拓扑排序即可 #include <bits/stdc++.h> using n ...

  8. poj 2186 Popular Cows 【强连通分量Tarjan算法 + 树问题】

    题目地址:http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Sub ...

  9. POJ 2186 Popular cows(Kosaraju+强联通分量模板)

    题目链接:http://poj.org/problem?id=2186 题目大意:给定N头牛和M个有序对(A,B),(A,B)表示A牛认为B牛是红人,该关系具有传递性,如果牛A认为牛B是红人,牛B认为 ...

随机推荐

  1. 移动端Vue回到顶部

    html: <div class="totop" id="totop" @click="Top" v-show="totop ...

  2. 18年selenium3+python3+unittest自动化测试教程(下)

    第六章 自动化测试进阶实战篇幅 1.自动化测试实战进阶之网页单选性别资料实战 简介:讲解使用selenium修改input输入框和单选框 2.自动化测试之页面常见弹窗处理 简介:讲解使用seleniu ...

  3. 菜鸟崛起 DB Chapter 5 MySQL 5.6数据库表的基本操作

    5   数据库表的基本操作 在数据库中,数据表是数据库中最重要.最基本的操作对象,是数据存储的基本单位.数据表被定义为列的集合,数据在表中是按照行和列的格式来存储的.每一行代表一条唯一的记录,每一列代 ...

  4. spring mvc 数据绑定入门

    1:基本数据类型key 是必传的并且必须类型一致 // http://localhost:8080/bind/baseType.do?xage=10 @RequestMapping(value = & ...

  5. bootstrap到底是用来做什么的

    Bootstrap官网:http://v3.bootcss.com/ Bootstrap是Twitter推出的一个用于前端开发的开源工具包.它由Twitter的设计师Mark Otto和Jacob T ...

  6. PHP基础 (麦子学院 第二阶段)

    zendstudio 10.0破解版,新建完项目后,首先修改项目的编码方式,统一改成utf-8 (选中项目,再右键properties:Text file encoding).修改字体大小. apac ...

  7. laravel 基础 --内置函数

    简介 Laravel 自带了一系列 PHP 辅助函数,很多被框架自身使用,如果你觉得方便的话也可以在代码中使用它们. https://laravelacademy.org/post/8967.html ...

  8. ZooKeeper(2)-安装和配置

    一.下载 https://zookeeper.apache.org/ 二.本地模式安装 1.安装前准备 (1)安装Jdk (2)拷贝Zookeeper安装包到Linux系统下 (3)解压到指定目录 . ...

  9. kivy学习三:打包成window可执行文件

    根据官方文档写出如下内容,主要是为了记录自己遇到的坑! 一.打开命令行 1.win+r 2.输入CMD(没错,就是那个黑窗口就是命令行) 二.新建一个新文件夹,用来存放我们打包成的文件(这里一定要注意 ...

  10. Electronic Devices【电子设备】

    Electronic Devices We may think we're a culture that gets rid of our worn technology at the first si ...