题目大意:给出一些边,求出一共能形成多少个最小生成树。

思路:最小生成树有非常多定理啊,我也不是非常明确。这里仅仅简单讲讲做法。关于定各种定理请看这里:http://blog.csdn.net/wyfcyx_forever/article/details/40182739

我们先做一次最小生成树。然后记录每一种长度的边有多少在最小生成树中,然后从小到大搜索,看每一种边权有多少种放法。然后全部的都算出来累乘就是终于的结果。

CODE:

#include <map>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 2010
#define MO 31011
using namespace std; map<int,int> G; struct Complex{
int x,y,len; bool operator <(const Complex &a)const {
return len < a.len;
}
void Read() {
scanf("%d%d%d",&x,&y,&len);
}
}edge[MAX]; int points,edges;
int ones[MAX]; int father[MAX];
int ans = 1; void Pretreatment()
{
for(int i = 1;i <= 1025; ++i)
ones[i] = ones[i >> 1] + (i&1);
} int Find(int x)
{
if(!father[x] || father[x] == x) return father[x] = x;
return father[x] = Find(father[x]);
} bool Kruskal()
{
int cnt = 0;
for(int i = 1;i <= edges; ++i) {
int fx = Find(edge[i].x);
int fy = Find(edge[i].y);
if(fx != fy) {
father[fy] = fx;
G[edge[i].len]++;
cnt++;
}
}
if(cnt < points - 1) return false;
return true;
} void DFS(int pos)
{
if(pos > edges) return ;
int st = pos,ed = pos,re = 0;
int cnt = G[edge[st].len];
if(!cnt) {
DFS(ed + 1);
return ;
}
while(edge[ed + 1].len == edge[st].len) ++ed;
for(int i = 0;i < (1 << (ed - st + 1)); ++i)
if(ones[i] == cnt) {
memset(father,0,sizeof(father));
int temp = i;
for(int j = st; temp; temp >>= 1,++j)
if(temp&1) {
int fx = Find(edge[j].x);
int fy = Find(edge[j].y);
if(fx == fy) break;
father[fy] = fx;
}
if(!temp) ++re;
}
ans = (ans * re) % MO;
memset(father,0,sizeof(father));
for(int i = st; i <= ed; ++i) {
int fx = Find(edge[i].x);
int fy = Find(edge[i].y);
if(fx == fy) continue;
father[fy] = fx;
}
for(int i = ed + 1;i <= edges; ++i)
edge[i].x = Find(edge[i].x),edge[i].y = Find(edge[i].y);
DFS(ed + 1);
} int main()
{
Pretreatment();
cin >> points >> edges;
for(int i = 1;i <= edges; ++i)
edge[i].Read();
sort(edge + 1,edge + edges + 1);
memset(father,0,sizeof(father));
if(!Kruskal()) {
cout << 0 << endl;
return 0;
}
DFS(1);
cout << ans << endl;
return 0;
}

BZOJ 1016 JSOI 2008 最小生成树计数 Kruskal+搜索的更多相关文章

  1. JSOI 2008 最小生成树计数

    JSOI 2008 最小生成树计数 今天的题目终于良心一点辣 一个套路+模版题. 考虑昨天讲的那几个结论,我们有当我们只保留最小生成树中权值不超过 $ k $ 的边的时候形成的联通块是一定的. 我们可 ...

  2. 【BZOJ 1016】[JSOI2008]最小生成树计数(搜索+克鲁斯卡尔)

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 [题意] [题解] /* 两个最小生成树T和T'; 它们各个边权的边的数目肯定是 ...

  3. 【BZOJ 1016】 [JSOI2008]最小生成树计数(matrix-tree定理做法)

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 [题意] [题解] /* 接上一篇文章; 这里用matrix-tree定理搞最小 ...

  4. [BZOJ 1013][JSOI 2008] 球形空间产生器sphere 题解(高斯消元)

    [BZOJ 1013][JSOI 2008] 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面 ...

  5. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  6. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条 ...

  7. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  8. [BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  9. bzoj1016/luogu4208 最小生成树计数 (kruskal+暴搜)

    由于有相同权值的边不超过10条的限制,所以可以暴搜 先做一遍kruskal,记录下来每个权值的边使用的数量(可以离散化一下) 可以证明,对于每个权值,所有的最小生成树中选择的数量是一样的.而且它们连成 ...

随机推荐

  1. css样式表中的样式覆盖顺序(转)

    有时候在写CSS的过程中,某些限制总是不起作用,这就涉及了CSS样式覆盖的问题,如下 Css代码   #navigator { height: 100%; width: 200; position:  ...

  2. npm命令要记

    npm list - depth 0 查看依赖 cnpm install 安装 npm outdated 查看模块过时 npm cache clear

  3. (10)python 特殊方法

    一.构造方法 在类中定义构造函数 >>> class a: def __init__(self): self.age=42 >>> f=a() >>&g ...

  4. ZCMU训练赛-J(循环节+字符串处理)

    J - Java Beans There are N little kids sitting in a circle, each of them are carrying some java bean ...

  5. 洛谷——P1407 工资

    P1407 工资 题目描述 有一家世界级大企业,他们经过调查,发现了一个奇特的现象,竟然在自己的公司里,有超过一半的雇员,他们的工资完全相同! 公布了这项调查结果后,众多老板对于这一现象很感兴趣,他们 ...

  6. [BZOJ4316]小C的独立集(圆方树DP)

    题意:求仙人掌图直径. 算法:建出仙人掌圆方树,对于圆点直接做普通的树上DP(忽略方点儿子),方点做环上DP并将值直接赋给父亲. 建图时有一个很好的性质,就是一个方点在邻接表里的点的顺序正好就是从环的 ...

  7. POJ 3537:Crosses and Crosses(Multi-Nim)

    [题目链接] http://poj.org/problem?id=3537 [题目大意] 在一个1*n的方格纸上下棋,谁先连三子谁就赢了,问必胜的是谁. [题解] 我们发现对于一个n规模的游戏.在i位 ...

  8. iOS开发——随机数的使用

    1).arc4random() 比较精确不需要生成随即种子        使用方法 :                  通过arc4random() 获取0到x-1之间的整数的代码如下:       ...

  9. Android开发工具

    Android开发工具: AndroidDevTools: 收集整理Android开发所需的Android SDK.开发中用到的工具.Android开发教程.Android设计规范,免费的设计素材等. ...

  10. Delphi~通过程序窗体句柄获取程序路径

    http://www.cnblogs.com/Jesses/articles/1636323.html 引用PsAPI var  h:HWND;  pid: Cardinal;  pHandle: T ...