[POI2008]STA-Station
一道树形dp题。
令dp[u]表示以u为根时所有点的深度之和。考虑u到他的一个子节点v时答案的变化,v子树以外的点的深度都加1,v子树以内的点的深度都减1,所以dp[v] = dp[u] + (n - siz[v]) - siz[v]。于是dp式就搞出来了。
所以两边dfs,第一遍求siz和dp[1],第二遍更新答案。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-;
const int maxn = 1e6 + ;
inline ll read()
{
ll ans = ;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = ans * + ch - ''; ch = getchar();}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < ) x = -x, putchar('-');
if(x >= ) write(x / );
putchar(x % + '');
} int n, ans = ;
struct Edge
{
int nxt, to;
}e[maxn << ];
int head[maxn], ecnt = ;
void addEdge(int x, int y)
{
e[++ecnt] = (Edge){head[x], y};
head[x] = ecnt;
} int siz[maxn], dep[maxn];
ll dp[maxn];
void dfs1(int now, int f)
{
siz[now] = ;
for(int i = head[now]; i; i = e[i].nxt)
{
if(e[i].to == f) continue;
dep[e[i].to] = dep[now] + ;
dp[] += dep[e[i].to];
dfs1(e[i].to, now);
siz[now] += siz[e[i].to];
} }
void dfs2(int now, int f)
{
for(int i = head[now]; i; i = e[i].nxt)
{
if(e[i].to == f) continue;
dp[e[i].to] = dp[now] + n - (siz[e[i].to] << );
if(dp[e[i].to] > dp[ans]) ans = e[i].to;
dfs2(e[i].to, now);
}
} int main()
{
n = read();
for(int i = ; i < n; ++i)
{
int x = read(), y = read();
addEdge(x, y); addEdge(y, x);
}
dfs1(, ); dfs2(, );
write(ans); enter;
return ;
}
[POI2008]STA-Station的更多相关文章
- BZOJ 1131: [POI2008]Sta( dfs )
对于一棵树, 考虑root的答案向它的孩子转移, 应该是 ans[son] = (ans[root] - size[son]) + (n - size[son]). so , 先 dfs 预处理一下, ...
- 1131: [POI2008]Sta
1131: [POI2008]Sta Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 783 Solved: 235[Submit][Status] ...
- BZOJ1131 POI2008 Sta 【树形DP】
BZOJ1131 POI2008 Sta Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=10 ...
- bzoj 1131 [POI2008]Sta 树形dp 转移根模板题
[POI2008]Sta Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1889 Solved: 729[Submit][Status][Discu ...
- [POI2008]Sta(树形dp)
[POI2008]Sta Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面 ...
- [BZOJ1131][POI2008] Sta 树的深度
Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面N-1条边. Output ...
- bzoj千题计划151:bzoj1131: [POI2008]Sta
http://www.lydsy.com/JudgeOnline/problem.php?id=1131 dp[i]=dp[fa[i]]-son[i]+n-son[i] #include<cst ...
- [BZOJ1131/POI2008]Sta树的深度
Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面N-1条边. Output ...
- BZOJ 1131: [POI2008]Sta
Description 一棵树,问以那个节点为根时根的总和最大. Sol DFS+树形DP. 第一遍统计一下 size 和 d. 第二遍转移根,统计答案就行了. Code /************* ...
- bzoj1131: [POI2008]Sta
思路:首先先求出以1为根的答案,然后考虑由i转移到i的儿子的答案的变化,显然以son[i]为根的子树的所有结点的深度都会减一,其余的点的深度都会加一,然后就可以直接O(n)求出所有结点的答案,然后取m ...
随机推荐
- Mac下Jenkins+SVN+Xcode构建持续导出环境
1 安装Jenkins Jenkins是基于Java开发的一种持续集成工具.所以呢,要使用Jenkins必须使用先安装JDK. JDK安装 JDK 下载地址 jdk 1.8.png 安装JDK的过程略 ...
- windows删除指定日期前的文件
@ echo offforfiles /p .\ /s /m 2008*.* /d -7 /c "cmd /c echo @file>>.\del.txt"forfil ...
- 你的UI设计够不够趣味性
这周要做一个设计,在研究怎么修改的时候,想到了要加入一些符合产品调性的趣味设计,但是要怎么加入才能增加用户对产品的印象,进而增加好感与认可呢,我们今天就来研究一下很多有意思的APP里的一些趣味设计. ...
- 记录: Win10+Ubuntu18.04双系统安装
在重装windows系统的时候顺便将ubuntu也重装了. window 10 安装 制作USB启动盘 到"微软中国下载中心"(http://www.microsoft.com/z ...
- [Modelsim] 仿真的基本操作
切换路径,建立库并编译所有源文件之后, 键入命令: vopt +acc topmodulename -o top vsim top 其中topmodulename是顶层模块的名称.
- Java入门系列-11-类和对象
这篇文章为你搞懂类和对象的使用 对象:用来描述客观事物的实体,由一组属性和方法组成,万物皆对象. 属性:就是对象的特征,像身高.体重.颜色 方法:对象的行为,如跑.跳 类:类是模子,定义对象将会拥有的 ...
- tomcat8.5.8遇到的两个问题
压力测试场景,前端nginx反向代理到4个tomcat实例,在其中的一个实例上产生了大量的countDownConnection Incorrect connection count警告 WARNIN ...
- [转]Show parameter & Table Not exists
本文转自:http://www.cnblogs.com/fangwenyu/archive/2011/01/06/1926774.html 问题描述 在尝试通过show parameter来查看一个参 ...
- hashlib库的使用
这个模块实现了许多不同的安全哈希和消息摘要算法的通用接口.包括FIPS安全哈希算法SHA1.SHA224.SHA256.SHA384和SHA512(在FIPS 180-2中定义)以及RSA的MD5算法 ...
- hello2详解
1.GreetingServlet.java(显示问候页面表单) 此servlet重写该doGet方法,实现GETHTTP方法.servlet显示一个简单的HTML问候表单,其提交按钮就像hello1 ...