【bzoj2144】跳跳棋
2144: 跳跳棋
Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 492 Solved: 244
[Submit][Status][Discuss]
Description
跳跳棋是在一条数轴上进行的。棋子只能摆在整点上。每个点不能摆超过一个棋子。我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置。我们要通过最少的跳动把他们的位置移动成x,y,z。(棋子是没有区别的)跳动的规则很简单,任意选一颗棋子,对一颗中轴棋子跳动。跳动后两颗棋子距离不变。一次只允许跳过1颗棋子。
写一个程序,首先判断是否可以完成任务。如果可以,输出最少需要的跳动次数。
Input
第一行包含三个整数,表示当前棋子的位置a b c。(互不相同)第二行包含三个整数,表示目标位置x y z。(互不相同)
Output
如果无解,输出一行NO。如果可以到达,第一行输出YES,第二行输出最少步数。
Sample Input
0 3 5
Sample Output
2
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<algorithm>
using namespace std;
#define INF 1000000000
struct node{int v[];}root1,root2;
int temp,temp1,temp2,ans,a[],b[];
inline int read()
{
int x=,f=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getchar();}
while(isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
}
node dfs(int p[],int k)
{
node ans;
for(int i=;i<=;i++) ans.v[i]=p[i];
int t1=p[]-p[],t2=p[]-p[];
if(t1==t2) return ans;
if(t1<t2)
{
int step=min(k,(t2-)/t1);
k-=step; temp+=step;
ans.v[]+=step*t1; ans.v[]+=step*t1;
}
if(t1>t2)
{
int step=min(k,(t1-)/t2);
k-=step; temp+=step;
ans.v[]-=step*t2; ans.v[]-=step*t2;
}
if(k) return dfs(ans.v,k);
else return ans;
}
bool operator!=(node a,node b){for(int i=;i<=;i++)if(a.v[i]!=b.v[i])return ;return ;}
int main()
{
freopen("cin.in","r",stdin);
freopen("cout.out","w",stdout);
for(int i=;i<=;i++) a[i]=read();
for(int i=;i<=;i++) b[i]=read();
sort(a+,a+); sort(b+,b+);
root1=dfs(a,INF); temp1=temp; temp=;
root2=dfs(b,INF); temp2=temp; temp=;
if(root1!=root2) {printf("NO\n"); return ;}
if(temp1>temp2)
{
swap(temp1,temp2);
for(int i=;i<=;i++)swap(a[i],b[i]);
}
ans=temp2-temp1;
root1=dfs(b,ans);
for(int i=;i<=;i++)b[i]=root1.v[i];
int l=,r=temp1;
while(l+<r)
{
int mid=(l+r)/;
if(dfs(a,mid)!=dfs(b,mid)) l=mid;
else r=mid;
}
if(dfs(a,l)!=dfs(b,l)) temp=r;
else temp=l;
printf("YES\n%d\n",ans+*temp);
return ;
}
【bzoj2144】跳跳棋的更多相关文章
- bzoj2144 跳跳棋 二分
[bzoj2144]跳跳棋 Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位 ...
- BZOJ2144跳跳棋——LCA+二分
题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的 游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他们的位置移动 ...
- BZOJ2144: 跳跳棋
传送门 神题一道. 考虑题目性质.首先对于一个状态,只存在四种情况,即最左/右边的点跳到中间,中间的点跳到左/右.而对于一个状态,显然第一种情况的两种分支不能同时存在,那么题目就可以理解为从$(a,b ...
- bzoj2144: 跳跳棋(二分/倍增)
思维好题! 可以发现如果中间的点要跳到两边有两种情况,两边的点要跳到中间最多只有一种情况. 我们用一个节点表示一种状态,那么两边跳到中间的状态就是当前点的父亲,中间的点跳到两边的状态就是这个点的两个儿 ...
- BZOJ2144 跳跳棋[建模+LCA]
思维题,思路比较神仙. 个人思路过程:个人只想到了只要中间棋子开始向外跳了,以后就不应该向内跳了,这样很蠢.所以应该要么先向内跳一会,要么直接开始中间的向外跳.不知道怎么处理,就卡住了. 20pts: ...
- bzoj2144 【国家集训队2011】跳跳棋
Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他 ...
- [BZOJ2144]国家集训队 跳跳棋
题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他们的位置移动 ...
- [BZOJ2144][国家集训队2011]跳跳棋
题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上. 每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\),\(c\)这三个位置. 我们要通 ...
- 【LCA】bzoj 2144:跳跳棋
2144: 跳跳棋 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 248 Solved: 121[Submit][Status][Discuss] ...
随机推荐
- [置顶]
Android玩转百度地图Sha1获取正确姿势?
场景一 由于最近项目钟要用到定位功能因此肯定需要用到地图以及地位功能,相信大家也知道目前国内比较出名的地图像百度.高德.腾讯等这些还是用到比较多的,于是思考了一下决定还是用百度,相信老司机们都知道的哈 ...
- HAWQ取代传统数仓实践(十二)——维度表技术之分段维度
一.分段维度简介 在客户维度中,最具有分析价值的属性就是各种分类,这些属性的变化范围比较大.对某个个体客户来说,可能的分类属性包括:性别.年龄.民族.职业.收入和状态,例如,新客户.活跃客户.不活跃客 ...
- eclipse 智能提示js和jquery等前端插件
使用Eclipse写Jquery和Javascript代码的时候,是没有智能提示的.我们可以使用一个插件来解决这个问题. 安装完成后,Eclipse会自动重启.重启之后,我们在项目上右键, 根据自 ...
- 伪元素:placeholder-shown&&:focus-within
:placeholder-shown 另外,划重点,这个伪类是仍处于实验室的方案.也就是未纳入标准,当然我们的目的是探寻有意思的 CSS . 当 input 类型标签使用了 placeholder 属 ...
- Python之namedtuple源码分析
namedtuple()函数根据提供的参数创建一个新类,这个类会有一个类名,一些字段名和一个可选的用于定义类行为的关键字,具体实现如下 namedtuple函数源码 from keyword impo ...
- 【LIUNX】目录或文件权限,权限授予
三个三个一组看: 1. 第一段表示文件所有者对此文件的操作权限 2. 第二段表示文件所有者所在组对些文件的操作权限 3. 第三段表示除上述两种外的任何用户/组对此文件的操作权限 r读取:4 w写入:2 ...
- 如何移除双系统mac中的windows系统
双系统 双系统即在电脑的不同分区中安装两个系统,两个系统不会互相影响,但是同时只能有一个系统正在运行,并且必须通过重启的方式来更换系统. 双系统一般由于解决对不同系统的需求,而且在电脑中直接安装系统也 ...
- noip济南清北冲刺班DAY1
上午 T1 立方数 题目描述 LYK定义了一个数叫“立方数”,若一个数可以被写作是一个正整数的3次方,则这个数就是立方数,例如1,8,27就是最小的3个立方数. 现在给定一个数P,LYK想要知道这个数 ...
- jslinq 使用总结
最近一直在用 jslinq 感觉还是不错的.用于增强 Array.find() 上重点: 1: 引用 cnpm install jslinq --save (本人用淘宝镜像--npmFQ感觉也不快-- ...
- Angular2常用命令
一.常用命令 1.1 npm config list配置项目 可进行相关代理配置,通常可以配置在网络环境较差的情况下,配置相关代理.相关的设置命令如图: 1.2 ng 新建启动项目 ng new pr ...