Lecture7 Regularization 正则化

7.1 过拟合问题 The Problem of Overfitting
7.2 代价函数 Cost Function
7.3 正则化线性回归  Regularized Linear Regression
7.4 正则化的逻辑回归模型 Regularized Logistic Regression

7.1 过拟合问题 The Problem of Overfitting

  参考视频: 7 - 1 - The Problem of Overfitting (10 min).mkv

  • 欠拟合/高偏差  underfitting 预测不准确
  • 刚好            just right
  • 过拟合/高方差  overfitting   泛化能力差

 回归问题:

  分类问题:

  解决方法:

1) 减少 feature 的个数:

  • Manually select which features to keep.
  • Use a model selection algorithm .

2) 正则化

  • Keep all the features, but reduce the magnitude of parameters θj
  • Regularization works well when we have a lot of slightly useful features.

7.2 代价函数 Cost Function

  参考视频: 7 - 2 - Cost Function (10 min).mkv

  如果线性回归出现过拟合,曲线方程如下:

  如果想消除高次幂项的影响,可以修改代价函数 ,在某些参数上设置一些惩罚,一定程度上减小这些参数的影响:

  要使代价函数趋于0,则需降低θ3和θ4的值,因为二次项≥0,所以令它们为0时代价函数最小,降低了他们在hypothesis function的影响,从而减少了过拟合。这就是正则化的思想。

  实际使用中,因为不知道具体应该惩罚那些参数。所以给所有参数都加一个系数 λ:

   λ or lambda 叫做 regularization parameter,加号后面这一项叫做 regularization term。
  1)如果 λ = 0或者特别小,起不到作用,仍然过拟合。

  1)如果 λ 选的太大,所有参数都遭到惩罚。最后假设方程可能变成 h(x) = θ0,导致欠拟合 underfitting。

7.3 正则化线性回归  Regularized Linear Regression

  参考视频: 7 - 3 - Regularized Linear Regression (11 min).mkv

  正则化线性回归的代价函数为:

  因为正则化不涉及到 θ0,梯度下降算法如下:

  对上面的算法第二个式子调整可得

( j ∈ 1,2 ... n)

  正则化线性回归的梯度下降算法的变化在于,每次都在原有算法更新规则的基础上令 θ减少了一个额外的值。

   如果使用正规方程 Normal Equation方法,引入一个 (n+1)×(n+1)维的方阵L,正则化如下:


  注:当 m < n 时,XTX 不可逆non-invertible。但是当加上 λ⋅L,XTX+ λ⋅L 变为可逆矩阵 invertible。

7.4 正则化的逻辑回归模型 Regularized Logistic Regression

  参考视频: 7 - 4 - Regularized Logistic Regression (9 min).mkv

  逻辑回归的代价函数为:

  加上正则项之后:

  注:这个代价函数看上去同正则化线性回归的式子一样,但是两个 ℎ 不同,所以有很大差别。

θ0不参与任何正则化
  效果(蓝色线是正则化之前,粉色线是正则化之后):

  仍然可以用 fminuc 函数来求解代价函数最小化的参数 ,但我们实现的 costFunction 函数中进行了正则化:

  python代码

 1 import numpy as np
2 def costReg(theta, X, y, learningRate):
3 theta = np.matrix(theta)
4 X = np.matrix(X)
5 y = np.matrix(y)
6 first = np.multiply(-y, np.log(sigmoid(X*theta.T)))
7 second = np.multiply((1 - y), np.log(1 - sigmoid(X*theta.T)))
8 reg = (learningRate / (2 * len(X))* np.sum(np.power(theta[:,1:the
9 ta.shape[1]],2))
10 return np.sum(first - second) / (len(X)) + reg

相关术语

decision boundary 决策边界
loophole 漏洞
nonlinear 非线性
penalize the parameter  惩罚参数
regularization term 正则项
regularization parameter 正则化参数
wiggly/curvy 摆动的 弯曲的
optimization objective 优化目标
lamda  即 λ
shrinking  收缩
magnitude  量级,重要性

【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 7 Regularization 正则化的更多相关文章

  1. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 15—Anomaly Detection异常检测

    Lecture 15 Anomaly Detection 异常检测 15.1 异常检测问题的动机 Problem Motivation 异常检测(Anomaly detection)问题是机器学习算法 ...

  2. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 16—Recommender Systems 推荐系统

    Lecture 16 Recommender Systems 推荐系统 16.1 问题形式化 Problem Formulation 在机器学习领域,对于一些问题存在一些算法, 能试图自动地替你学习到 ...

  3. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 14—Dimensionality Reduction 降维

    Lecture 14 Dimensionality Reduction 降维 14.1 降维的动机一:数据压缩 Data Compression 现在讨论第二种无监督学习问题:降维. 降维的一个作用是 ...

  4. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 13—Clustering 聚类

    Lecture 13 聚类 Clustering 13.1 无监督学习简介  Unsupervised Learning Introduction 现在开始学习第一个无监督学习算法:聚类.我们的数据没 ...

  5. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 12—Support Vector Machines 支持向量机

    Lecture 12 支持向量机 Support Vector Machines 12.1 优化目标 Optimization Objective 支持向量机(Support Vector Machi ...

  6. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计

    Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议

    Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...

  8. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 1_Introduction and Basic Concepts 介绍和基本概念

    目录 1.1 欢迎1.2 机器学习是什么 1.2.1 机器学习定义 1.2.2 机器学习算法 - Supervised learning 监督学习 - Unsupervised learning  无 ...

  9. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 18—Photo OCR 应用实例:图片文字识别

    Lecture 18—Photo OCR 应用实例:图片文字识别 18.1 问题描述和流程图 Problem Description and Pipeline 图像文字识别需要如下步骤: 1.文字侦测 ...

随机推荐

  1. eclipse新建web项目

    方法/步骤     首先,你要先打开Eclipse软件,打开后在工具栏依次点击[File]>>>[New]>>>[Dynamic Web Project],这个就代 ...

  2. [Scala]Scala学习笔记二 数组

    1. 定长数组 如果你需要一个长度不变的数组,可以使用Scala中的Array. val nums = new Array[Int](10) // 10个整数的数组 所有元素初始化为0 val str ...

  3. CentOS 7下sqlite3的问题修复

    Centos7下的nltk启动问题 CentOS 7, Python 3.6,ipython 6.0.0 问题描述 ipython 启动ipython命令 import nltk 爆出以下的错误信息: ...

  4. Java进阶面试问题列表

    面向对象编程的基本理念与核心设计思想 解释下多态性(polymorphism),封装性(encapsulation),内聚(cohesion)以及耦合(coupling). 继承(Inheritanc ...

  5. Gif图片验证码类

    新开发的安全验证码类,支持生成Gif图片验证码(带噪点,干扰线,网格,随机色背景,随机自定义字体,倾斜,Gif动画). 上图: 字体及字体文件的路径需要在类中$FontFilePath及$FontFi ...

  6. AlexNet神经网络结构

    Alexnet是2014年Imagenet竞赛的冠军模型,准确率达到了57.1%, top-5识别率达到80.2%. AlexNet包含5个卷积层和3个全连接层,模型示意图: 精简版结构: conv1 ...

  7. [转载] ffmpeg 基本数据结构和对象: AVPacket、AVPicture、AVFrame

    一.AVPacket /** * AVPacket 作为解码器的输入 或 编码器的输出. * 当作为解码器的输入时,它由demuxer生成,然后传递给解码器 * 当作为编码器的输出时,由编码器生成,然 ...

  8. Android UI之LinearLayout详解

    ※※※摘自http://www.cnblogs.com/salam/archive/2010/10/20/1856793.html LinearLayout是线性布局控件,它包含的子控件将以横向或竖向 ...

  9. HihoCoder 1053 居民迁移

    居民迁移 时间限制:3000ms 单点时限:1000ms 内存限制:256MB 描述 公元2411年,人类开始在地球以外的行星建立居住点.在第1326号殖民星上,N个居住点分布在一条直线上.为了方便描 ...

  10. (转)移动端开发总结(一)视口viewport总结

    转载链接:移动端开发中,关于适配问题的一点总结(一) 视口 布局视口layout viewport 视觉视口visual viewport 理想视口 缩放 一个重大区别 最小缩放 和最大缩放 分辨率 ...