「2017 山东三轮集训 Day7」Easy
一棵带边权的树,多次询问 $x$ 到编号为 $[l,r]$ 的点最短距离是多少
$n \leq 100000$
sol:
动态点分治,每层重心维护到所有点的距离
查询的时候在管辖这个点的 log 层线段树里查就可以了
因为这样每一层的答案只会漏而不会错,所以正确性有保障
不会写点分治了...orz
#include <bits/stdc++.h>
#define LL long long
#define rep(i, s, t) for (register int i = (s), i##end = (t); i <= i##end; ++i)
#define dwn(i, s, t) for (register int i = (s), i##end = (t); i >= i##end; --i)
using namespace std;
inline int read() {
int x = , f = ;
char ch;
for (ch = getchar(); !isdigit(ch); ch = getchar())
if (ch == '-')
f = -f;
for (; isdigit(ch); ch = getchar()) x = * x + ch - '';
return x * f;
}
const int maxn = , inf = 1e9;
int n, m;
int first[maxn], to[maxn << ], nx[maxn << ], val[maxn], cnt;
inline void add(int u, int v, int w) {
to[++cnt] = v;
val[cnt] = w;
nx[cnt] = first[u];
first[u] = cnt;
}
int sig, root, size[maxn], pa[maxn], f[maxn], vis[maxn];
inline void findroot(int x, int fa) {
size[x] = ;
f[x] = ;
for (int i = first[x]; i; i = nx[i]) {
if ((to[i] == fa) || (vis[to[i]]))
continue;
findroot(to[i], x);
size[x] += size[to[i]];
f[x] = max(f[x], size[to[i]]);
}
f[x] = max(f[x], sig - size[x]);
if (f[x] < f[root])
root = x;
}
inline void build(int x) {
vis[x] = ;
for (int i = first[x]; i; i = nx[i]) {
if (vis[to[i]])
continue;
root = ;
sig = size[to[i]];
findroot(to[i], x);
pa[root] = x;
build(root);
}
}
namespace sp_lca {
int size[maxn], dep[maxn], fa[maxn], bl[maxn], dp[maxn];
inline void dfs1(int x) {
size[x] = ;
for (int i = first[x]; i; i = nx[i]) {
if (to[i] == fa[x])
continue;
fa[to[i]] = x;
dep[to[i]] = dep[x] + ;
dp[to[i]] = dp[x] + val[i];
dfs1(to[i]);
size[x] += size[to[i]];
}
}
inline void dfs2(int x, int col) {
int k = ;
bl[x] = col;
for (int i = first[x]; i; i = nx[i])
if (to[i] != fa[x] && size[to[i]] > size[k])
k = to[i];
if (!k)
return;
dfs2(k, col);
for (int i = first[x]; i; i = nx[i])
if (to[i] != fa[x] && to[i] != k)
dfs2(to[i], to[i]);
}
inline void init() {
dfs1();
dfs2(, );
}
inline int lca(int x, int y) {
while (bl[x] != bl[y]) {
if (dep[bl[x]] < dep[bl[y]])
swap(x, y);
x = fa[bl[x]];
}
return dep[x] < dep[y] ? x : y;
}
} // namespace sp_lca
inline int dis(int x, int y) { return sp_lca::dp[x] + sp_lca::dp[y] - (sp_lca::dp[sp_lca::lca(x, y)] << ); }
int rt[maxn], ls[maxn << ], rs[maxn << ], va[maxn << ], ToT;
inline void Insert(int &x, int l, int r, int pos, int v) {
if (!x)
x = ++ToT, va[x] = inf;
va[x] = min(va[x], v);
if (l == r)
return;
int mid = (l + r) >> ;
if (pos <= mid)
Insert(ls[x], l, mid, pos, v);
else
Insert(rs[x], mid + , r, pos, v);
}
inline int query(int x, int l, int r, int L, int R) {
if (!x)
return inf;
if (L <= l && r <= R)
return va[x];
int mid = (l + r) >> , res = inf;
if (L <= mid)
res = min(res, query(ls[x], l, mid, L, R));
if (R > mid)
res = min(res, query(rs[x], mid + , r, L, R));
return res;
}
int main() {
// freopen("a.in","r",stdin);
// freopen("a.out","w",stdout);
n = read();
rep(i, , n) {
int u = read(), v = read(), w = read();
add(u, v, w);
add(v, u, w);
}
f[] = inf;
root = ;
sig = n;
findroot(, );
build(root);
sp_lca ::init();
rep(i, , n) for (int x = i; x; x = pa[x]) Insert(rt[x], , n, i, dis(x, i));
// rep(i, 1, n) cout << pa[i] << endl;
int q = read();
while (q--) {
int u = read(), v = read(), x = read();
int cur = x, ans = inf;
while (cur) {
ans = min(ans, query(rt[cur], , n, u, v) + dis(cur, x));
cur = pa[cur];
}
cout << ans << endl;
}
}
「2017 山东三轮集训 Day7」Easy的更多相关文章
- 【loj6145】「2017 山东三轮集训 Day7」Easy 动态点分治+线段树
题目描述 给你一棵 $n$ 个点的树,边有边权.$m$ 次询问,每次给出 $l$ .$r$ .$x$ ,求 $\text{Min}_{i=l}^r\text{dis}(i,x)$ . $n,m\le ...
- #6145. 「2017 山东三轮集训 Day7」Easy 动态点分治
\(\color{#0066ff}{题目描述}\) JOHNKRAM 最近在参加 C_SUNSHINE 举办的聚会. C 国一共有 n 座城市,这些城市由 n−1 条无向道路连接.任意两座城市之间有且 ...
- LOJ #6145. 「2017 山东三轮集训 Day7」Easy 点分树+线段树
这个就比较简单了~ Code: #include <cstdio> #include <algorithm> #define N 100004 #define inf 1000 ...
- 「2017 山东三轮集训 Day7 解题报告
「2017 山东三轮集训 Day7」Easy 练习一下动态点分 每个点开一个线段树维护子树到它的距离 然后随便查询一下就可以了 注意线段树开大点... Code: #include <cstdi ...
- 「2017 山东三轮集训 Day1」Flair
模拟赛的题 好神仙啊 题面在这里 之前的Solution很蠢 现在已经update.... 题意 有$ n$个商品价格均为$ 1$,您有$ m$种面值的货币,面值为$ C_1..C_m$ 每种物品你有 ...
- 【loj6142】「2017 山东三轮集训 Day6」A 结论题+Lucas定理
题解: 当奇数 发现答案就是C(n,1)^2+C(n,3)^2+...C(n,n)^2 倒序相加,发现就是C(2n,n) 所以答案就是C(2n,n)/2 当偶数 好像并不会证 打表出来可以得到 2.当 ...
- loj #6138. 「2017 山东三轮集训 Day4」Right
题目: 题解: 暴力一波 \(SG\) 函数可以发现这么一个规律: \(p\) 为奇数的时候 : \(SG(n) = n \% 2\) \(p\) 为偶数的时候 : \(SG(n) = n \% (p ...
- loj #6136. 「2017 山东三轮集训 Day4」Left
题目: 题解: 我们可以发现所有的交换器都是一个位置连接着下一层左侧的排序网络,另一个位置连着另一侧的排序网络. 而下一层是由两个更低阶的排序网络构成的. 两个网络互不干扰.所以我们可以通过第一行和最 ...
- Loj #6142. 「2017 山东三轮集训 Day6」A
link: https://loj.ac/problem/6142 推完一波式子之后发现求的是:ΣC(N,i)^2, 其中i是偶数. 然后就可以卢卡斯乱搞了,分奇偶和之前的答案合并就好了233. #i ...
随机推荐
- python之网络socket编程
一.网络协议 客户端/服务器架构 1.硬件C/S架构(打印机) 2.软件C/S架构(互联网中处处是C/S架构):B/S架构也是C/S架构的一种,B/S是浏览器/服务器 C/S架构与socket的关系: ...
- openstack ocata版(脚本)控制节点安装
一.初始化环境: 1.更换yum源: yum install -y wget mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS- ...
- a各种状态
hover 设置对象在其鼠标悬停时的样式表属性 active 设置对象在被用户激活(在鼠标点击与释放之间发生的事件)时的样式表属性.link 设置a对象在未被访问前的样式表属性.visited ...
- 服务中的 API 网关(API Gateway)
我们知道在微服务架构风格中,一个大应用被拆分成为了多个小的服务系统提供出来,这些小的系统他们可以自成体系,也就是说这些小系统可以拥有自己的数据库,框架甚至语言等,这些小系统通常以提供 Rest Api ...
- jQuery 中让我误解的那些方法
至今我都不能说把 jQuery 中的方法在实践中都用了一遍, 一部分是用不到,一部分则是我未能体会它的魅力, 所以今天就来收录一下,那些从我们之间溜走的美丽. $.fn.add() 一开始对它的理解就 ...
- HAproxy 介绍
HAproxy 介绍 (1)HAProxy 是一款提供高可用性.负载均衡以及基于TCP(第四层)和HTTP(第七层)应用的代理软件,支持虚拟主机,它是免费.快速并且可靠的一种解决方案. HAProxy ...
- id和NSObject *和instanceType的区别与联系
id 被成为万能指针,也就是可以指向任何对象. NSObject * 本身就是定义指向NSObject类型的指针. 那么这两者有什么区别吗? 这两者都是既可以作为返回值,又可以作为变量修饰.而其主要区 ...
- K8s 日常操作
1.获取所有Pods kubectl get pods --namespace=default 2.获取所有Deployments kubectl get deployments --namespac ...
- iptables基础知识详解
iptables防火墙可以用于创建过滤(filter)与NAT规则.所有Linux发行版都能使用iptables,因此理解如何配置 iptables将会帮助你更有效地管理Linux防火墙.如果你是第一 ...
- 利用CXF框架开发webservice
开发服务端代码 1. web.xml文件中添加cxf的servlet 2. 定义接口 @WebService(targetNamespace="http://UserInfo.ws.com& ...