程序1

任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解。

使用tensorflow编程实现:

#-*- coding: utf-8 -*-)
import tensorflow as tf # 声明占位变量x、y
x = tf.placeholder("float",shape=[None,1])
y = tf.placeholder("float",[None,1]) # 声明变量
W = tf.Variable(tf.zeros([1,1]))
b = tf.Variable(tf.zeros([1])) # 操作
result = tf.matmul(x,W) +b # 损失函数
lost = tf.reduce_sum(tf.pow((result-y),2)) # 优化
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(lost) with tf.Session() as sess:
# 初始化变量
sess.run(tf.global_variables_initializer())
# 这里x、y给固定的值
x_s = [[3.0]]
y_s = [[100.0]] step =0
while(True):
step += 1
feed = {x: x_s, y: y_s}
# 通过sess.run执行优化
sess.run(train_step, feed_dict=feed)
if step % 50 ==0:
print 'step: {0}, loss: {1}'.format(step,sess.run(lost,feed_dict=feed))
if sess.run(lost,feed_dict=feed) < 0.00001 or step >3000:
print ''
print 'final loss is: {}'.format(sess.run(lost,feed_dict=feed))
print 'final result of {0} = {1}'.format('x×W+b',3.0*sess.run(W)+sess.run(b))
print("W : %f" % sess.run(W))
print("b : %f" % sess.run(b))
break

输出:

step: 50,  loss: 1326.19543457
step: 100, loss: 175.879058838
step: 150, loss: 23.325012207
step: 200, loss: 3.09336590767
step: 250, loss: 0.410243988037
step: 300, loss: 0.0544071868062
step: 350, loss: 0.00721317622811
step: 400, loss: 0.000956638017669
step: 450, loss: 0.000126981700305
step: 500, loss: 1.68478582054e-05
step: 550, loss: 2.23610550165e-06 final loss is: 2.23610550165e-06
final result of x×W+b = [[ 99.99850464]]
W : 29.999552
b : 9.999846

任务很简单,初始学习率设置为0.0001,550论迭代后优化完成,如果初始学习率设置的高一点,如0.005,会加快收敛。求得 W = 29.999552, b = 9.999846

x×W+b = 3.0×29.999552+9.999846 = 99.999846 ,约等于目标 100.0 了。

程序2

任务描述: x、y是二维矩阵, x = [[1.0, 3.0], [3.2, 4.]], y = [[6.0, 3.0], [5.2, 43.]], 运算公式 x×W+b = y,求 W和b的最优值。

# -*- coding: utf-8 -*-)
import tensorflow as tf # 声明占位变量x、y, 形状为[2,2]
x = tf.placeholder("float",shape=[2,2])
y = tf.placeholder("float",[2,2]) # 声明变量
W = tf.Variable(tf.zeros([2,2]))
b = tf.Variable(tf.zeros([1])) # 操作
result = tf.matmul(x,W) +b # 损失函数
lost = tf.reduce_sum(tf.pow((y-result),2)) # 优化
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(lost) with tf.Session() as sess:
# 初始化变量
sess.run(tf.global_variables_initializer()) # 这里x、y给固定的值
x_s = [[1.0, 3.0], [3.2, 4.]]
y_s = [[6.0, 3.0], [5.2, 43.]] step = 0
while(True):
step += 1
feed = {x: x_s, y: y_s} # 通过sess.run执行优化
sess.run(train_step, feed_dict=feed) if step % 500 == 0:
print 'step: {0}, loss: {1}'.format(step, sess.run(lost, feed_dict=feed))
if sess.run(lost, feed_dict=feed) < 0.00001 or step > 10000:
print ''
print 'final loss is: {}'.format(sess.run(lost, feed_dict=feed))
print("W : {}".format(sess.run(W)))
print("b : {}".format( sess.run(b))) result1 = tf.matmul(x_s, W) + b
print 'final result is: {}'.format(sess.run(result1))
print 'final error is: {}'.format(sess.run(result1)-y_s) break

输出:

step: 500,  loss: 59.3428421021
step: 1000, loss: 8.97444725037
step: 1500, loss: 1.40089821815
step: 2000, loss: 0.22409722209
step: 2500, loss: 0.036496296525
step: 3000, loss: 0.00602086028084
step: 3500, loss: 0.00100283313077
step: 4000, loss: 0.000168772909092
step: 4500, loss: 2.86664580926e-05
step: 5000, loss: 4.90123693453e-06 final loss is: 4.90123693453e-06
W : [[ -2.12640238 20.26368904]
[ 3.87999701 -4.58247852]]
b : [-3.51479006]
final result is: [[ 5.99879789 3.00146341]
[ 5.20070982 42.99909973]]
final error is: [[-0.00120211 0.00146341]
[ 0.00070982 -0.00090027]]

程序3    (增加可视化)


任务描述:  X是128个二维数组[X1, X2], Y是X中X1和X2 相关的函数,Y = x1 +10*x2,
运算公式  Y = (X*w1+b1)*(w2)+b2,求 w1、b1、w2、b2的最优值。

# -*- coding: utf-8 -*-)
import tensorflow as tf
from numpy.random import RandomState # 定义训练数据batch的大小
batch_size = 8 # 在shape上使用None表示该维度的具体数值不定
x = tf.placeholder(tf.float32, shape=(None, 2), name='x-input')
y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input') # 定义神经网络的参数
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))
bias1 = tf.Variable(tf.random_normal([3], stddev=1, seed=1))
bias2 = tf.Variable(tf.random_normal([1], stddev=1, seed=1)) # 定义神经网络前向传播的过程,即操作
a = tf.nn.relu(tf.matmul(x, w1) + bias1)
y = tf.nn.relu(tf.matmul(a, w2) + bias2) # 定义损失函数和反向传播算法
loss = tf.reduce_sum(tf.pow((y-y_),2))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss) # 梯度下降优化算法 # produce the data,通过随机数生成一个模拟数据集
rdm = RandomState(seed = 1) # 设置seed = 1 ,使每次生成的随机数一样
dataset_size = 128
X = rdm.rand(dataset_size, 2)
Y = [[x1 +10*x2] for (x1, x2) in X] # creare a session,创建一个会话来运行TensorFlow程序
with tf.Session() as sess: # 定义命名空间,使用tensorboard进行可视化
with tf.name_scope("inputs"):
tf.summary.histogram('X', X) with tf.name_scope("target"):
tf.summary.histogram('Target', Y) with tf.name_scope("outputs"):
tf.summary.histogram('Y', y) with tf.name_scope('loss'):
tf.summary.histogram('Loss', loss) summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter('./log/', tf.get_default_graph()) # 初始化变量
sess.run(tf.global_variables_initializer()) # 设定训练的轮数
STEPS = 10000
for i in range(STEPS+1):
# get batch_size samples data to train,每次选取batch_size个样本进行训练
start = (i * batch_size) % dataset_size
end = min(start + batch_size, dataset_size) # 通过选取的样本训练神经网络并更新参数
sess.run(train_step, feed_dict={x: X[start: end], y_: Y[start: end]})
if i % 500 == 0:
# 每隔一段时间计算在所有数据上的loss并输出
total_cross_entropy,summary = sess.run([loss,summary_op], feed_dict={x: X, y_: Y})
print ("After %d training steps, loss on all data is %g" % (i, total_cross_entropy))
# 在训练结束之后,输出神经网络的参数 log_writer = tf.summary.FileWriter('./log/')
log_writer.add_summary(summary, i) print sess.run(w1)
print sess.run(w2)

输出:


After 0 training steps, loss on all data is 2599.94
After 500 training steps, loss on all data is 873.661
After 1000 training steps, loss on all data is 667.791
After 1500 training steps, loss on all data is 483.075
After 2000 training steps, loss on all data is 300.244
After 2500 training steps, loss on all data is 159.576
After 3000 training steps, loss on all data is 74.0152
After 3500 training steps, loss on all data is 30.0223
After 4000 training steps, loss on all data is 10.8486
After 4500 training steps, loss on all data is 3.86847
After 5000 training steps, loss on all data is 1.67753
After 5500 training steps, loss on all data is 0.870904
After 6000 training steps, loss on all data is 0.473931
After 6500 training steps, loss on all data is 0.262818
After 7000 training steps, loss on all data is 0.132299
After 7500 training steps, loss on all data is 0.0585541
After 8000 training steps, loss on all data is 0.022748
After 8500 training steps, loss on all data is 0.00789603
After 9000 training steps, loss on all data is 0.00259982
After 9500 training steps, loss on all data is 0.000722203
After 10000 training steps, loss on all data is 0.000218332
[[-0.81131822 0.74178803 -0.06654923]
[-2.4427042 1.72580242 3.50584793]]
[[-0.81131822]
[ 1.53606057]
[ 2.09628034]]

tensorboard可视化

程序3运行之后在程序所在目录下生成 log 文件夹,保存了运行过程中的中间参数;
在log文件夹同级目录下,执行tensorboard指令:

tensorboard --logdir=log


当前系统的浏览器里输入TensorBoard返回的ip地址,这里是
"http://dcrmg:6006",就可以看到程序中记录下的参数可视化:

X是二维数组,Target的是128个分布在1.0~10.0之间的浮点数。 预测值Y在4000轮迭代之后越来越接近真实Target值。

直方图分布:

超简单tensorflow入门优化程序&&tensorboard可视化的更多相关文章

  1. Tensorflow 搭建神经网络及tensorboard可视化

    1. session对话控制 matrix1 = tf.constant([[3,3]]) matrix2 = tf.constant([[2],[2]]) product = tf.matmul(m ...

  2. SpringCloud超简单的入门(1)--一些简单的介绍

    简介 简单来说,springcloud的就是由一组springboot应用(服务)组成,相互之间通过REST等方式进行通信. 两个springboot应用,其中一个作为服务提供者,一个作为服务消费者, ...

  3. TensorFlow基础笔记(9) Tensorboard可视化显示以及查看pb meta模型文件的方法

    参考: http://blog.csdn.net/l18930738887/article/details/55000008 http://www.jianshu.com/p/19bb60b52dad ...

  4. springcloud超简单的入门2--Eureka服务治理

    Eureka服务治理 下面请听第一个话题,母...咳咳,拿错书了. Eureka简介 eureka是什么呢? 简单来说呢,当我的微服务应用多了起来,一个一个写死再程序里是件很不优雅的事情,而且同一服务 ...

  5. springcloud超简单的入门3--负载均衡

    上个文章的末尾说到,当有多个服务实例的时候,怎样来获取服务实例.但是,只是简单的通过get(0)来获取列表中的第一个实例来使用. 现实场景中,还需要写一个算法来实现负载均衡来决定每次使用的服务实例,而 ...

  6. 超简单 Promise封装小程序ajax 超好用 以及封装登录

    //网络类 //封装网络请求 const ajax = (ajaxData, method) => { wx.showLoading({ title: '加载中', mask: true }); ...

  7. GitHub这么火,程序员你不学学吗? 超简单入门教程 【转载】

    本GitHub教程旨在能够帮助大家快速入门学习使用GitHub. 本文章由做全栈攻城狮-写代码也要读书,爱全栈,更爱生活.原创.如有转载,请注明出处. GitHub是什么? GitHub首先是个分布式 ...

  8. 程序员,一起玩转GitHub版本控制,超简单入门教程 干货2

    本GitHub教程旨在能够帮助大家快速入门学习使用GitHub,进行版本控制.帮助大家摆脱命令行工具,简单快速的使用GitHub. 做全栈攻城狮-写代码也要读书,爱全栈,更爱生活. 更多原创教程请关注 ...

  9. 学习TensorFlow,TensorBoard可视化网络结构和参数

    在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可 ...

随机推荐

  1. C++实现计算器功能(包括计算含未知量的式子),输出后缀表达式

    大概描述        用c++语言在vc中实现部分数学计算功能.其中实现的数学计算功能包括加减乘除运算.开方计算.自然对数运算.以10为底的对数运算.幂计算.正弦余弦计算. 由用户输入要计算的表达式 ...

  2. Linux基础系列:常用命令(2)

    作业一: 1) 新建用户natasha,uid为1000,gid为555,备注信息为“master” groupadd -g 555 natasha useradd -u 1000 -g 555 -c ...

  3. UI控件之UIScrollView

    UIScrollView:提供了滚动功能,用来显示超过一屏的视图 创建滚动视图 UIScrollView *scrollView=[[UIScrollView alloc]initWithFrame: ...

  4. 单口双线PC连接转换器 手机电脑耳机转接线

    看着标题是不是很绕, 其实这个需求我相信不少人都有, 只是可能很少会想到. 手机换了一个又一个, 佩戴的耳机同样是一个又一个, 最别扭的是, 用手机的时候往往不用耳机, 不少童鞋都会选择把手机的耳机放 ...

  5. 主攻ASP.NET.4.5.1 MVC5.0之重生:系统角色与权限(一)

    数据结构 权限分配 1.在项目中新建文件夹Helpers 2.在HR.Helpers文件夹下添加EnumMoudle.Cs namespace HR.Helpers { public enum Enu ...

  6. 学习C#之旅 冒泡排序,选择排序,插入排序,希尔排序[资料收集]

    关于冒泡排序,选择排序,插入排序,希尔排序[资料收集]  以下资料来源与网络 冒泡排序:从后到前(或者从前到后)相邻的两个两两进行比较,不满足要求就位置进行交换,一轮下来选择出一个最小(或最大)的放到 ...

  7. JAVA获取Spring上下文

    1. 添加监听 public class SpringContextListener implements ServletContextListener { //获取spring注入的bean对象 p ...

  8. 【转】Android中的IOC框架,完全注解方式就可以进行UI绑定和事件绑定

    转载请注明出处:http://blog.csdn.net/blog_wang/article/details/38468547 相信很多使用过Afinal和Xutils的朋友会发现框架中自带View控 ...

  9. Android框架之路——GreenDao3.2.2的使用

    一.简介 GreenDAO是一个开源的安卓ORM框架,能够使SQLite数据库的开发再次变得有趣.它减轻开发人员处理低级数据库需求,同时节省开发时间. SQLite是一个令人敬畏的内嵌的关系数据库,编 ...

  10. Explain分析查询语句

    ​表的读取顺序 读取操作的类型 可用索引,实际使用的索引 表之间的引用 每张表多少行被优化器查询 索引的长度 EXPLAIN字段解释: ØTable:显示这一行的数据是关于哪张表的 Øpossible ...