bzoj 1096 斜率优化DP
首先比较容易的看出来是DP,w[i]为前i个工厂的最小费用,那么w[i]=min(w[j-1]+cost(j,i))+c[i],但是这样是不work的,复杂度上明显过不去,这样我们考虑优化DP。
设A[i]=Σp[j](0<j<=i),B[i]=Σp[j]*x[j](0<j<=i),那么我们就可以表示cost(j,i)了。
cost(j,i)=Σ(x[i]-x[k])*p[k]
=Σx[i]*p[k]-Σx[k]*p[k]
=x[i]*(A[i]-A[j-1])-(B[i]-B[j-1])
=x[i]*A[i]-x[i]*A[j-1]-B[i]+B[j-1]
对于这个式子我们考虑斜率优化,假设j>k且决策j优于决策k。
那么有w[j-1]-x[i]*A[j-1]+B[j-1]<w[k-1]-x[i]*B[k-1]+B[k-1]
那么((w[j-1]+B[j-1])-(w[k-1]+B[k-1]))/(A[j-1]-B[k-1])<x[i]
这样就是标准的斜率优化了,维护一个上凸壳就行了。
/**************************************************************
Problem: 1096
User: BLADEVIL
Language: C++
Result: Accepted
Time:2648 ms
Memory:55492 kb
****************************************************************/ //By BLADEVIL
#include <cstdio>
#define maxn 1000010
#define LL long long using namespace std; int n;
LL a[maxn],c[maxn],x[maxn],que[maxn];
LL A[maxn],B[maxn],w[maxn]; double k(int k,int j)
{
double kk;
kk=(((w[j-]+B[j-])-(w[k-]+B[k-]))/(A[j-]-A[k-]));
return kk;
} int main()
{
scanf("%d",&n);
for (int i=;i<=n;i++) scanf("%lld%lld%lld",&x[i],&a[i],&c[i]);
for (int i=;i<=n;i++) A[i]=A[i-]+a[i],B[i]=B[i-]+a[i]*x[i];
int h=,t=;
for (int i=;i<=n;i++)
{
for (;(h<t)&&(k(que[t-],i)<k(que[t-],que[t]));t--);
que[++t]=i;
for (;(h<t)&&(k(que[h],que[h+])<x[i]);h++);
int cur=que[h];
w[i]=w[cur-]+x[i]*A[i]-x[i]*A[cur-]-B[i]+B[cur-]+c[i];
//printf("%d %d\n",h,t);
}
printf("%lld\n",w[n]);
return ;
}
bzoj 1096 斜率优化DP的更多相关文章
- bzoj 1010 斜率优化DP
我的第二道斜率DP. 收获: 1.假设两个位置:p<q<i,然后让某一位置优,看其满足什么性质,所谓斜率优化就是满足: (g[q]-g[p])/(f[q]-f[p]) op h[i] 要 ...
- bzoj 3437 斜率优化DP
写题解之前首先要感谢妹子. 比较容易的斜率DP,设sum[i]=Σb[j],sum_[i]=Σb[j]*j,w[i]为第i个建立,前i个的代价. 那么就可以转移了. /**************** ...
- bzoj 1942 斜率优化DP
首先我们贪心的考虑,对于某一天来说,我们只有3中策略,第一种为不做任何行动,这时的答案与前一天相同,第二种为将自己的钱全部换成a,b货币,因为如果换a,b货币,代表在之后的某一天卖出去后会赚钱,那么当 ...
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- BZOJ 3156: 防御准备 斜率优化DP
3156: 防御准备 Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...
- BZOJ 1010: 玩具装箱toy (斜率优化dp)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...
- BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...
随机推荐
- Linux上jdk的安装(CentOS6.5)
centos openjdk 安装 http://www.cnblogs.com/ilahsa/archive/2012/12/11/2813059.html 知CentOS6.5桌面版默认安装的是J ...
- 「日常训练」 Soldier and Number Game (CFR304D2D)
题意 (Codeforces 546D) 给定一个数x=a!b!" role="presentation">x=a!b!x=a!b!的形式,问其中有几个质因数. 分 ...
- Spring实战第四章学习笔记————面向切面的Spring
Spring实战第四章学习笔记----面向切面的Spring 什么是面向切面的编程 我们把影响应用多处的功能描述为横切关注点.比如安全就是一个横切关注点,应用中许多方法都会涉及安全规则.而切面可以帮我 ...
- LeetCode 876——链表的中间结点
1. 题目 给定一个带有头结点 head 的非空单链表,返回链表的中间结点. 如果有两个中间结点,则返回第二个中间结点. 示例 1: 输入:[1,2,3,4,5] 输出:此列表中的结点 3 (序列化形 ...
- Jquery append()总结(一) 转载
转载自:http://dushanggaolou.iteye.com/blog/1173457 append(content) /** * 向每个匹配的元素内部追加内容. * 这个操作与对指定的元素 ...
- markdown(自己看)
https://www.cnblogs.com/james-lee/p/6847906.html https://maxiang.io/
- 查看lwjgl常用状态的值
在遇到状态值较多较复杂的情况,可以选择使用GL11.glIsEnabled()或者GL11.glGet()函数来查看状态机值,以下是常用值: public static void printOpenG ...
- 《学习OpenCV》课后习题解答7
题目:(P105) 创建一个结构,结构中包含一个整数,一个CvPoint和一个 CvRect:称结构体为"my_struct". a. 写两个函数:void Write_my_st ...
- 关于for循环的理解
个人理解:for循环,顾名思义,就是在每种特定条件下,按照要求执行每个阶段,也指着在某种情况下的赋值,反反复复的根据 编程来输入.当在一些特定条件下,程序中的数值也会发生相应的改变,这就得看执行的口令 ...
- 安装和配置hadoop集群步骤
hadoop集群的安装步骤和配置 hadoop是由java语言编写的,首先我们肯定要在电脑中安装jdk,配置好jdk的环境,接下来就是安装hadoop集群的步骤了,在安装之前需要创建hadoop用户组 ...