典型例题有三道:

没有上司的舞会

选课

景点中心

我们可以把动态规划的状态和转移描述成DAG

对于有根树来说,如果我们规定边的方向由父节点指向叶子节点

或者是由叶子节点指向父节点(奇葩)

那么它也是一个DAG

如果状态和转移都发生在特殊的DAG,树上

叫做树形动态规划

在树规中,父节点的值通过所有子节点计算完毕之后得出

这里上晚会

1A还是很舒服的,毕竟以前敲得很熟了

 #include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=;
const int maxm=;
int n;
int r[maxn],vis[maxn],f[maxn][];
int cnt;
int g[maxn];
struct Edge{int t,next;}e[maxm];
void addedge(int u,int v)
{
cnt++;
e[cnt].t=v;
e[cnt].next=g[u];
g[u]=cnt;
}
void dfs(int id)
{
f[id][]=r[id];
if(g[id]==) return;
//如果这是一个叶子,就到头了,我可是先赋值了给爹爹们用的哦
for(int tmp=g[id];tmp;tmp=e[tmp].next)
{
dfs(e[tmp].t);
f[id][]+=f[e[tmp].t][];
//选id则id的所有儿子全部GG
if(f[e[tmp].t][]>f[e[tmp].t][]) //如果不选id,要看儿子们是选好还是不选好
f[id][]+=f[e[tmp].t][];
else f[id][]+=f[e[tmp].t][];
}
}
int main()
{
int x,y;
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&r[i]);
for(int i=;i<n;i++)
{
scanf("%d%d",&x,&y);
addedge(y,x); //由BOSS指向员工这样遍历起来好处理
vis[x]=; //标记这个不是根,只有BOSS上面没人
}
for(int i=;i<=n;i++)
if(!vis[i])
{
dfs(i);
printf("%d",max(f[i][],f[i][]));
break;
}
return ;
}

动态规划:树形DP的更多相关文章

  1. 动态规划——树形dp

    动态规划作为一种求解最优方案的思想,和递归.二分.贪心等基础的思想一样,其实都融入到了很多数论.图论.数据结构等具体的算法当中,那么这篇文章,我们就讨论将图论中的树结构和动态规划的结合——树形dp. ...

  2. UOJ#290. 【ZJOI2017】仙人掌 仙人掌,Tarjan,计数,动态规划,树形dp,递推

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ290.html 题解 真是一道好题! 首先,如果不是仙人掌直接输出 0 . 否则,显然先把环上的边删光. ...

  3. 树形DP——动态规划与数据结构的结合,在树上做DP

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是算法与数据结构的第15篇,也是动态规划系列的第4篇. 之前的几篇文章当中一直在聊背包问题,不知道大家有没有觉得有些腻味了.虽然经典的文 ...

  4. 【动态规划】树形DP完全详解!

    蒟蒻大佬时隔三个月更新了!!拍手拍手 而且是更新了几篇关于DP的文章(RioTian狂喜) 现在赶紧学习和复习一下树形DP.... 树形DP基础:Here,CF上部分树形DP练习题:Here \[QA ...

  5. 动态规划(树形DP):LNOI 2016 侦察守卫

    Sample Input 12 2 8 9 12 6 1 1 5 1 4 8 10 6 10 1 2 3 5 6 7 8 9 10 11 1 3 2 3 3 4 4 5 4 6 4 7 7 8 8 9 ...

  6. 动态规划(树形DP):HDU 5834 Magic boy Bi Luo with his excited tree

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA8UAAAJbCAIAAABCS6G8AAAgAElEQVR4nOy9fXQcxZ0uXH/hc8i5N+

  7. 树形动态规划(树形DP)入门问题—初探 & 训练

    树形DP入门 poj 2342 Anniversary party   先来个题入门一下~ 题意: 某公司要举办一次晚会,但是为了使得晚会的气氛更加活跃,每个参加晚会的人都不希望在晚会中见到他的直接上 ...

  8. 选课 ( dp 树形dp 动态规划 树规)

    和某篇随笔重了?!!?!?!?!?!?不管了留着吧 题目: 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之 ...

  9. 动态规划专题(二)——树形DP

    前言 \(DP\)这东西真的是博大精深啊...... 简介 树形\(DP\),顾名思义,就是在树上操作的\(DP\),一般可以用\(f_i\)表示以编号为\(i\)的节点为根的子树中的最优解. 转移的 ...

  10. 1113: [视频]树形动态规划(TreeDP)8:树(tree)(树形dp状态设计总结)

    根据最近做的几道树形dp题总结一下规律.(从这篇往前到洛谷 P1352 ) 这几道题都是在一颗树上,然后要让整棵树的节点或边 满足一种状态.然后点可以影响到相邻点的这种状态 然后求最小次数 那么要从两 ...

随机推荐

  1. Hibernate-ORM:11.Hibernate中的关联查询

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 本篇博客将讲述Hibernate中的关联查询,及其级联(cascade)操作,以及指定哪一方维护关联关系的(i ...

  2. How to add a webpart to your website

          I have download a webpart that can play media on the website from the internet.Then how to add ...

  3. 一些可能有点用处的C#开发经验

    前言: 下个月就要去进行Java开发了,以后C#碰的就少了(可惜去年买了三本C#的书,几乎还是全新的……),平时一些经验都记在OneNote里面,现在收集整理出来,因为只能利用交接工作的打酱油的时间, ...

  4. oracle12c 新建表空间

    第1步:创建临时表空间 create temporary tablespace jeeplus_temp tempfile 'D:\app\Administrator\virtual\product\ ...

  5. C++知识点 内存占用问题

    有一次去面试,谈的挺好的,被人问了一个问题,瞬间暴露自己基础能力弱的弱点了,这里自己记录下,以后慢慢长进. 问题 char test1[]={1,2,3,4}; char test2[]={1,2,3 ...

  6. Kotlin操作符重载:把标准操作加入到任何类中(KAD 17)

    作者:Antonio Leiva 时间:Mar 21, 2017 原文链接:https://antonioleiva.com/operator-overload-kotlin/ 就像其他每种语言一样, ...

  7. GraphSAGE 代码解析(四) - models.py

    原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(一) - unsupervised_train.py GraphSAGE 代码解析(二) - layers.py ...

  8. MySql数据库插入或更新报错:Cannot add or update a child row: a foreign key constraint fails

    具体报错信息: Cannot add or update a child row: a foreign key constraint fails (`xxx`.`AAA`, CONSTRAINT `t ...

  9. 【积累】根据CheckBox的不选中 ,用JQuery 清除 RidaoButtonList 的选中项

    如题,项目要求无刷新更新数据. 1)Web页面布局 Html以及效果图  

  10. oracle dg 备库不同步主库数据

    今天遇到一个数据库同步问题,主库被关闭,重启主库后,备库不能正常同步主库数据.只有当手动切换归档日志的时候,备库才能和主库一致. 这个问题的解决方法: 重启备库,重新应用归档日志. 操作步骤如下: / ...