Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5949   Accepted: 2053   Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j — input specification for part jDi,k— output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.
题意:每台电脑有P部分,可以通过不同的机器来进行加工。 有N台机器,每台机器用2 P +1 个整数来描述:Qi Si,1 Si,2 ... Si,p Di,1 Di,2. .. Di,p,其中Qi 指定了机器的性能,表示每小时加工的电脑数量。 Si,j 为第j 部分的输入规格,0表示该部分不能被加工过,1表示该部分必须被加工过,2表示都可以。 Di,k 为第k 部分的输出规格。 0表示经过该机器不加工,1表示该机器加工该部分。 1≤P≤10,1≤N≤50,1≤Qi≤10000。

注意:本题Sample I/O这段英文不用输入输出

Sample input:

P  N (N台机器,每台机器有P部分)

接着输入N行,其实每行都是一个结点的信息

每一行的格式为 一个Q  P个S  P个D

其中Q为当前结点的容量,S都是当前结点的输入规格,D都是输出规格

Sample output:

第一行的两个数字分别表示:最大流的值,流量发生变化的边数M(和s还有t关联的边不在其内,那些不属于原有的边,是附加边)

接下来有M行,每一行都有三个数字,A B W

A B为流量发生变化的边的端点,W为流量的变化值(每条边初始流量为0,最终流量就是找到最大流时的流量)

若图不连通,则输出0 0

 #include <iostream>
#include<stdio.h>
#include<queue>
#include<string.h>
using namespace std;
int map[][],mapbk[][];
int input[][];
int path[];
int flow[];
int change[][];
int start,end;
int p,n;
queue<int> q;
int BFS(){
memset(path,-,sizeof(path));
while(!q.empty()) q.pop();
q.push(start);
flow[start]=;
path[start]=;
while(!q.empty()){
int v=q.front();
if(v==end)
break;
q.pop();
for(int i=;i<=end;i++){
if(path[i]==- && map[v][i]!= && start!=i){
flow[i]=flow[v]<map[v][i]?flow[v]:map[v][i];
path[i]=v;
q.push(i);
}
} }
if(path[end]==-) return -;
else
return flow[end];
}
int Edmonds_Karp(){
int step,max_flow=,now,pre;
while(){
step=BFS();
if(step==-)
break;
max_flow+=step;
now=end;
while(now!=start){
pre=path[now];
map[pre][now]-=step;
map[now][pre]+=step;
now=pre;
} }
return max_flow;
}
int main() {
while(cin>>p>>n){
memset(map,,sizeof(map));
memset(input,,sizeof(input));
//gets(str);
for(int i=;i<=n;i++){
for(int j=;j<*p+;j++){
int t;
cin>>t;
input[i][j]=t;
}
}
//getchar();
// gets(str);
for(int i=;i<=n;i++){
int flag=;
for(int j=;j<p+;j++){
if(input[i][j]==)
flag=;
}
if(flag!=){
map[][i]=input[i][];
}
flag=;
for(int j=p+;j<*p+;j++){
if(input[i][j]==)
flag=;
}
if(flag!=)
map[i][n+]=input[i][];
flag=;
for(int j=;j<=n;j++){
if(i!=j){
for(int k=;k<p+;k++){
if(i!=j&&input[i][p+k]+input[j][k]==)
flag=;
}
if(flag!=)
map[i][j]=input[i][]<input[j][]?input[i][]:input[j][];
flag=;
}
} }
start=;
end=n+;
memcpy(mapbk,map,sizeof(map));
int result=Edmonds_Karp(); int count=;
for(int i=;i<n+;i++){
for(int j=;j<n+;j++){
if(map[i][j]<mapbk[i][j]){
change[count][]=i;
change[count][]=j;
change[count][]=mapbk[i][j]-map[i][j];
count++;
}
}
}
cout<<result<<' '<<count<<endl;
for(int i=;i<count;i++){
cout<<change[i][]<<' '<<change[i][]<<' '<<change[i][]<<endl;
}
}
return ;
}

ACM Computer Factory - poj 3436 (最大流)的更多相关文章

  1. A - ACM Computer Factory POJ - 3436 网络流

    A - ACM Computer Factory POJ - 3436 As you know, all the computers used for ACM contests must be ide ...

  2. A - ACM Computer Factory - poj 3436(最大流)

    题意:有一个ACM工厂会生产一些电脑,在这个工厂里面有一些生产线,分别生产不同的零件,不过他们生产的电脑可能是一体机,所以只能一些零件加工后别的生产线才可以继续加工,比如产品A在生产线1号加工后继续前 ...

  3. (网络流)ACM Computer Factory --POJ --3436

    链接: http://poj.org/problem?id=3436 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82835#probl ...

  4. ACM Computer Factory POJ - 3436 网络流拆点+路径还原

    http://poj.org/problem?id=3436 每台电脑有$p$个组成部分,有$n$个工厂加工电脑. 每个工厂对于进入工厂的半成品的每个组成部分都有要求,由$p$个数字描述,0代表这个部 ...

  5. POJ-3436:ACM Computer Factory (Dinic最大流)

    题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...

  6. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  7. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  8. POJ 3436:ACM Computer Factory 网络流

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6247   Accepted: 2 ...

  9. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

随机推荐

  1. Java汉字md5值不一致问题

    原文:http://blog.csdn.net/earthhour/article/details/51188437 通过main方法测试得到一个加密值,通过servlet request调用得到一个 ...

  2. easyui-validatebox 的简单长度验证

    验证: 页面代码: <form id="invoiceEdit"> <input id="fpdm" name="fpdm" ...

  3. 10个常用的ps命令总结,参数

    Linux系统中10个常用的ps命令总结 PS 命令是什么 查看它的man手册可以看到,ps命令能够给出当前系统中进程的快照.它能捕获系统在某一事件的进程状态.如果你想不断更新查看的这个状态,可以使用 ...

  4. cs-Filters

    ylbtech-Unitity: cs-Filters HealthcareAuthorizeAttribute.cs HealthcareHandleErrorAttribute.cs Health ...

  5. fedora25安装和docker-ce_清华源

    docker-ce_清华源 https://mirrors.tuna.tsinghua.edu.cn/docker-ce/linux/fedora/ fedora25 docker-ce版本: htt ...

  6. centos7服务器基本的安全设置

    在使用云服务器的过程中经常会遇到很多非法的入侵试图登录服务器,所以我们需要对服务器进行安全防范 关闭ping扫描,虽然没什么卵用 先切换到root echo 1 > /proc/sys/net/ ...

  7. http://blog.csdn.net/a942980741/article/details/39990699

    http://blog.csdn.net/a942980741/article/details/39990699

  8. 一起來玩鳥 Starling Framework(2)效能測試以及Image與Texture

    上一篇我們放了一個Quad與TextField在舞台上慢慢轉.眼尖的可能會發現轉起來邊緣有點鋸齒,這可以透過設定Starling的反鋸齒來解決,在Main.as裡,新增了_starling之後,可以加 ...

  9. Yii2系列教程:安装及Hello World

    http://www.yiiframework.com/ 安装Yii2 打算从头开始,所以,连安装Yii2也稍微写一点吧.安装Yii2最好的方式就是使用composer: composer globa ...

  10. mahout运行测试与数据挖掘算法之聚类分析(一)kmeans算法解析

    在使用mahout之前要安装并启动hadoop集群 将mahout的包上传至linux中并解压即可 mahout下载地址: 点击打开链接 mahout中的算法大致可以分为三大类: 聚类,协同过滤和分类 ...