题解:区间开方emmm,这马上让我想起了当时写线段树的时候,很显然,对于一个在2^31次方以内的数,开方7-8次就差不多变成一了,所以我们对于每次开方,如果块中的所有数都为一了,那么开方也没有必要了.

所以开个tag标记一下当前块是否均为一,如果不是的话每次暴力构块即可

代码如下:

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; long long a[],tag[],sum[],lump[];
int n,sz; void reset(int x)
{
if(tag[x])
{
return;
}
sum[x]=;
tag[x]=;
for(int i=(x-)*sz+;i<=min(sz*x,n);i++)
{
a[i]=sqrt(a[i]);
sum[x]+=a[i];
if(a[i]>)
{
tag[x]=;
}
}
} void add(long long l,long long r)
{
for(int i=l;i<=min(sz*lump[l],r);i++)
{
sum[lump[i]]-=a[i]; //lump!!!
a[i]=sqrt(a[i]);
sum[lump[i]]+=a[i];
}
if(lump[l]!=lump[r])
{
for(int i=(lump[r]-)*sz+;i<=r;i++)
{
sum[lump[i]]-=a[i];
a[i]=sqrt(a[i]);
sum[lump[i]]+=a[i];
}
}
for(int i=lump[l]+;i<=lump[r]-;i++)
{
reset(i);
}
} long long query(long long l,long long r)
{
long long ans=;
for(int i=l;i<=min(lump[l]*sz,r);i++)
{
ans+=a[i];
}
if(lump[l]!=lump[r])
{
for(int i=(lump[r]-)*sz+;i<=r;i++)
{
ans+=a[i];
}
}
for(int i=lump[l]+;i<=lump[r]-;i++)
{
ans+=sum[i];
}
return ans;
} int main()
{
long long opt,l,r,c;
scanf("%d",&n);
sz=sqrt(n);
for(int i=;i<=n;i++)
{
lump[i]=(i-)/sz+;
scanf("%lld",&a[i]);
}
for(int i=;i<=n;i++)
{
sum[lump[i]]+=a[i];
}
for(int i=;i<=n;i++)
{
scanf("%lld%lld%lld%lld",&opt,&l,&r,&c);
if(!opt)
{
add(l,r);
}
else
{
printf("%lld\n",query(l,r));
}
}
}

 

LibreOJ 6281 数列分块入门 5(分块区间开方区间求和)的更多相关文章

  1. 线段树 区间开方区间求和 & 区间赋值、加、查询

    本文同步发表于 https://www.zybuluo.com/Gary-Ying/note/1288518 线段树的小应用 -- 维护区间开方区间求和 题目传送门 约定: sum(i,j) 表示区间 ...

  2. LibreOJ 6281 数列分块入门5

    题目链接:https://loj.ac/problem/6281 参考博客:https://blog.csdn.net/qq_36038511/article/details/79725027 我一开 ...

  3. LibreOJ 6280 数列分块入门 4(分块区间加区间求和)

    题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...

  4. LOJ.6281.数列分块入门5(分块 区间开方)

    题目链接 int内的数(也不非得是int)最多开方4.5次就变成1了,所以还不是1就暴力,是1就直接跳过. #include <cmath> #include <cstdio> ...

  5. [Libre 6281] 数列分块入门 5 (分块)

    水一道入门分块qwq 题面:传送门 开方基本暴力.. 如果某一个区间全部都开成1或0就打上标记全部跳过就行了 因为一个数开上个四五六次就是1了所以复杂度能过233~ code: //By Menteu ...

  6. LibreOJ 6277 数列分块入门 1(分块)

    题解:感谢hzwer学长和loj让本蒟蒻能够找到如此合适的入门题做. 这是一道非常标准的分块模板题,本来用打标记的线段树不知道要写多少行,但是分块只有这么几行,极其高妙. 代码如下: #include ...

  7. LibreOJ 6278 数列分块入门 2(分块)

     题解:非常高妙的分块,每个块对应一个桶,桶内元素全部sort过,加值时,对于零散块O(sqrt(n))暴力修改,然后暴力重构桶.对于大块直接整块加.查询时对于非完整块O(sqrt(n))暴力遍历.对 ...

  8. LibreOJ 6279 数列分块入门 3(分块+排序)

    题解:自然是先分一波块,把同一个块中的所有数字压到一个vector中,将每一个vector进行排序.然后对于每一次区间加,不完整的块加好后暴力重构,完整的块直接修改标记.查询时不完整的块暴力找最接近x ...

  9. LOJ.6284.数列分块入门8(分块)

    题目链接 \(Description\) 给出一个长为n的数列,以及n个操作,操作涉及区间询问等于一个数c的元素,并将这个区间的所有元素改为c. \(Solution\) 模拟一些数据可以发现,询问后 ...

随机推荐

  1. 1、Flume基础扫盲

    1.概述 Flume是一个分布式.可靠的和高可用的海量日志采集.聚合和传输的系统.支持在系统中定制种类数据发送方,用于收集数据:同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的 ...

  2. DHCP(五)

    DHCP重新登录 在经过发现,提供,选择以及应答阶段后,DHCP客户端每次重新登录网络时,就不需要再发送DHCP DISCOVER发现信息了,而是直接发送包含前一次所分配的IP地址的DHCP REQU ...

  3. (转)oracle嵌套表示例

    本文转载自:http://www.cnblogs.com/gisdream/archive/2012/04/13/2445291.html ----嵌套表:就是把一个表中的字段定义为一个表,这个字段表 ...

  4. (转)oracle - type

    本文转载自:http://www.cnblogs.com/o-andy-o/archive/2012/05/25/2517741.html type定义: oracle中自定义数据类型oracle中有 ...

  5. Android 自定义相机Demo源码

    Github源码:https://github.com/LinJZong/AndroidProject.git 模仿360相机,图片资源来源于360相机,仅供学习使用.使用过程中遇到问题或Bug可发我 ...

  6. 获取Request.Form所有内容

    string wwww = "";        for (int i = 0; i < Request.Form.Count; i++)        {          ...

  7. 第九章 整合Mybatis(待续)

    ··········

  8. python学习——练习题(5)

    """ 题目:输入三个整数x,y,z,请把这三个数由小到大输出. """ def inputInt(i): ""&quo ...

  9. WPF TabItem.Collapse 的问题

    WPF TabItem.Collapse 的问题 运行环境:Window7 64bit,.NetFramework4.61,C# 6.0: 编者:乌龙哈里 2017-02-16 感谢 LICEcap ...

  10. .Net Core 迁移之坑二 《ToString("F") 输出与windows不一致问题》

    大家都知道 ToString("F") 是干什么的 这里我还是介绍一下 格式字符串采用以下形式:Axx,其中 A 为格式说明符,指定格式化类型,xx 为精度说明符,控制格式化输出的 ...