只有5行代码的算法——Floyd算法
Floyd算法用于求一个带权有向图(Wighted Directed Graph)的任意两点距离的算法,运用了动态规划的思想,算法的时间复杂度为O(n^3)。具体方法是:设点i到点j的距离为d[i][j],循环尝试插入点k,若能使得d[i][k]+d[k][j]的距离变短,则插入点k,否则不插入。C++代码如下:
#include<iostream>
using namespace std; int Floyd(int *d[],int n) //d[][]为点i到点j的有向直线距离
{
for(int i=0;i<n;i++) //前两层循环针对点i和点j
for(int j=0;j<n;j++)
for(int k=0;k<n;k++) //第三层循环尝试插入点k
d[i][j] = min(d[i][j],d[i][k]+d[k][j]);//动态规划的思想
} int main() //举例说明
{
const int n = 7,M=9999999;//M很大,d[i][j]=M表示没有从i指向j的有向路径
int d[n][n] = {{0,3,2,1,M,M,M},
{M,0,M,M,2,M,4},
{M,M,0,M,2,M,M},
{M,M,M,0,2,7,M},
{M,M,M,M,0,M,2},
{M,M,M,M,M,0,3},
{M,M,M,M,M,M,0}};
int **D = new int*[n];
for(int i=0;i<n;i++)
{
D[i] = new int[n];
for(int j=0;j<n;j++)
D[i][j] = d[i][j];
}
Floyd(D,n);
cout << D[0][n-1] << endl;
return 0;
}
只有5行代码的算法——Floyd算法的更多相关文章
- 多源最短路径算法—Floyd算法
前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...
- 图的最短路径算法-- Floyd算法
Floyd算法求的是图的任意两点之间的最短距离 下面是Floyd算法的代码实现模板: ; ; // maxv为最大顶点数 int n, m; // n 为顶点数,m为边数 int dis[maxv][ ...
- 最短路-SPFA算法&Floyd算法
SPFA算法 算法复杂度 SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环. SPFA一般情况复杂度是O(m)最坏情况下复杂度和朴素 ...
- [链接]最短路径的几种算法[迪杰斯特拉算法][Floyd算法]
最短路径—Dijkstra算法和Floyd算法 http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算 ...
- (转)最短路算法 -- Floyd算法
转自:http://blog.51cto.com/ahalei/1383613 暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程 ...
- 最短路径---Dijkstra/Floyd算法
1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...
- Floyd 算法的动态规划本质
[转载自:http://www.cnblogs.com/chenying99/p/3932877.html] Floyd–Warshall(简称Floyd算法)是一种著名的解决任意两点间的最短路径(A ...
- 探求Floyd算法的动态规划本质(转)
---恢复内容开始--- Floyd–Warshall(简称Floyd算法)是一种著名的解决任意两点间的最短路径(All Paris Shortest Paths,APSP)的算法.从表面上粗看,Fl ...
- 一步步学算法(算法分析)---6(Floyd算法)
Floyd算法 Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命 ...
随机推荐
- golang and intellij
有一个项目,混合了java和go,需要在intellij中安装go的插件. OK,网上的信息简直混乱不堪,两个流派,一个流派就是装插件,一个流派就是编译插件,各种折腾,还是安装不了,谁知柳暗花明又一村 ...
- tomcat 服务添加到系统服务
tomcat: 设置环境变量: CATALINA_HOME: tomcat路径 列如:D:\apache-tomcat-8.5.24 打开命令窗口,进入到tomcat/bin目录下 执行service ...
- URL大小写敏感之谜
URL其实就是我们浏览器地址栏的地址,一般由三部分组成: 协议名称,一般就是http 域名,也就是主机名 资源路径 如链接:http://www.w3school.com.cn/js/js_obj_r ...
- 51nod 1831 小C的游戏(博弈论+打表)
比较坑的题目. 题意就是:给出一堆石子,一次操作可以变成它的约数个,也可以拿只拿一个,不能变成一个,最后拿的人输. 经过打表发现 几乎所有质数都是先手必败的,几乎所有合数都是先手必胜的 只有几个例外, ...
- 【题解】NOI2015寿司晚宴
想好久啊+不敢写啊……但果然人还是应当勇敢自信,只有坚定地去尝试,才会知道最后的结果.1A真的太开心啦,不过好像我的做法还是比较复杂的样子……理解起来应该算是比较容易好懂的类型,大家可以参考一下思路~ ...
- [CF895C]Square Subsets
题目大意:给一个集合$S$($1\leq S_i\leq 70$),选择一个非空子集,使它们的乘积等于某个整数的平方的方法的数量. 求方案数,若两种方法选择的元素的索引不同,则认为是不同的方法. 题解 ...
- [NOIP2017 TG D2T3]列队
题目大意:有一个$n \times m$的方阵,第$i$行第$j$列的人的编号是$(i-1) \times m + j$. 现在有$q$个出列操作,每次让一个人出列,然后让这个人所在行向左看齐,再让最 ...
- BZOJ3533 [Sdoi2014]向量集 【线段树 + 凸包 + 三分】
题目链接 BZOJ3533 题解 我们设询问的向量为\((x_0,y_0)\),参与乘积的向量为\((x,y)\) 则有 \[ \begin{aligned} ans &= x_0x + y_ ...
- JSOI2004 平衡点 / 吊打XXX [模拟退火]
题目描述 如图:有n个重物,每个重物系在一条足够长的绳子上.每条绳子自上而下穿过桌面上的洞,然后系在一起.图中X处就是公共的绳结.假设绳子是完全弹性的(不会造成能量损失),桌子足够高(因而重物不会垂到 ...
- PHP正则匹配与替换的简单例子
PHP正则匹配与替换的简单例子,含一个匹配获取加租字体例子和一个匹配替换超链接的例子. 1.查找匹配 <b> 与 </b> 标签的内容: <?php $str = &qu ...