只有5行代码的算法——Floyd算法
Floyd算法用于求一个带权有向图(Wighted Directed Graph)的任意两点距离的算法,运用了动态规划的思想,算法的时间复杂度为O(n^3)。具体方法是:设点i到点j的距离为d[i][j],循环尝试插入点k,若能使得d[i][k]+d[k][j]的距离变短,则插入点k,否则不插入。C++代码如下:
#include<iostream>
using namespace std; int Floyd(int *d[],int n) //d[][]为点i到点j的有向直线距离
{
for(int i=0;i<n;i++) //前两层循环针对点i和点j
for(int j=0;j<n;j++)
for(int k=0;k<n;k++) //第三层循环尝试插入点k
d[i][j] = min(d[i][j],d[i][k]+d[k][j]);//动态规划的思想
} int main() //举例说明
{
const int n = 7,M=9999999;//M很大,d[i][j]=M表示没有从i指向j的有向路径
int d[n][n] = {{0,3,2,1,M,M,M},
{M,0,M,M,2,M,4},
{M,M,0,M,2,M,M},
{M,M,M,0,2,7,M},
{M,M,M,M,0,M,2},
{M,M,M,M,M,0,3},
{M,M,M,M,M,M,0}};
int **D = new int*[n];
for(int i=0;i<n;i++)
{
D[i] = new int[n];
for(int j=0;j<n;j++)
D[i][j] = d[i][j];
}
Floyd(D,n);
cout << D[0][n-1] << endl;
return 0;
}
只有5行代码的算法——Floyd算法的更多相关文章
- 多源最短路径算法—Floyd算法
前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...
- 图的最短路径算法-- Floyd算法
Floyd算法求的是图的任意两点之间的最短距离 下面是Floyd算法的代码实现模板: ; ; // maxv为最大顶点数 int n, m; // n 为顶点数,m为边数 int dis[maxv][ ...
- 最短路-SPFA算法&Floyd算法
SPFA算法 算法复杂度 SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环. SPFA一般情况复杂度是O(m)最坏情况下复杂度和朴素 ...
- [链接]最短路径的几种算法[迪杰斯特拉算法][Floyd算法]
最短路径—Dijkstra算法和Floyd算法 http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算 ...
- (转)最短路算法 -- Floyd算法
转自:http://blog.51cto.com/ahalei/1383613 暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程 ...
- 最短路径---Dijkstra/Floyd算法
1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...
- Floyd 算法的动态规划本质
[转载自:http://www.cnblogs.com/chenying99/p/3932877.html] Floyd–Warshall(简称Floyd算法)是一种著名的解决任意两点间的最短路径(A ...
- 探求Floyd算法的动态规划本质(转)
---恢复内容开始--- Floyd–Warshall(简称Floyd算法)是一种著名的解决任意两点间的最短路径(All Paris Shortest Paths,APSP)的算法.从表面上粗看,Fl ...
- 一步步学算法(算法分析)---6(Floyd算法)
Floyd算法 Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命 ...
随机推荐
- HDU 1398 Square Coins 整数拆分变形 母函数
欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) Square Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit ...
- PHP判断类型的方法
1.gettype():获取变量类型 2.is_array():判断变量类型是否为数组类型 3.is_double():判断变量类型是否为倍浮点类型 4.is_float():判断变量类型是否为浮点类 ...
- 安装elasticsearch-1.7.1及中文IK和近义词配置
安装elasticsearch及中文IK和近义词配置 https://www.cnblogs.com/yjf512/p/4789239.html 安装elasticsearch及中文IK和近义词配置 ...
- GET传值
发送页: <form id="form1" runat="server"> <div> <asp:TextBox ID=</ ...
- [Leetcode] Anagrams 颠倒字母构成词
Given an array of strings, return all groups of strings that are anagrams. Note: All inputs will be ...
- debounce 与 throttle 区别
原文地址:http://undefinedblog.com/debounce-and-throttle/ 二.什么是debounce 1. 定义 如果用手指一直按住一个弹簧,它将不会弹起直到你松 ...
- Codeforces Round #525 (Div. 2)B. Ehab and subtraction
B. Ehab and subtraction 题目链接:https://codeforc.es/contest/1088/problem/B 题意: 给出n个数,给出k次操作,然后每次操作把所有数减 ...
- angularjs的验证信息的写法
<div ng-messages="alarmDelayForm.alarmRuleName.$error" role="alert"> <d ...
- source改变当前路径
转摘自:http://hi.baidu.com/homappy/item/90e416525d2faf958c12edb7 Shell 脚本执行有三种方法 bash 脚本名 sh 脚本名 chmod ...
- Java并发(4)- synchronized与CAS
引言 上一篇文章中我们说过,volatile通过lock指令保证了可见性.有序性以及"部分"原子性.但在大部分并发问题中,都需要保证操作的原子性,volatile并不具有该功能,这 ...