Lifting the Stone

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6971    Accepted Submission(s): 2919

Problem Description
There
are many secret openings in the floor which are covered by a big heavy
stone. When the stone is lifted up, a special mechanism detects this and
activates poisoned arrows that are shot near the opening. The only
possibility is to lift the stone very slowly and carefully. The ACM team
must connect a rope to the stone and then lift it using a pulley.
Moreover, the stone must be lifted all at once; no side can rise before
another. So it is very important to find the centre of gravity and
connect the rope exactly to that point. The stone has a polygonal shape
and its height is the same throughout the whole polygonal area. Your
task is to find the centre of gravity for the given polygon.
 
Input
The
input consists of T test cases. The number of them (T) is given on the
first line of the input file. Each test case begins with a line
containing a single integer N (3 <= N <= 1000000) indicating the
number of points that form the polygon. This is followed by N lines,
each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These
numbers are the coordinates of the i-th point. When we connect the
points in the given order, we get a polygon. You may assume that the
edges never touch each other (except the neighboring ones) and that they
never cross. The area of the polygon is never zero, i.e. it cannot
collapse into a single line.
 
Output
Print
exactly one line for each test case. The line should contain exactly
two numbers separated by one space. These numbers are the coordinates of
the centre of gravity. Round the coordinates to the nearest number with
exactly two digits after the decimal point (0.005 rounds up to 0.01).
Note that the centre of gravity may be outside the polygon, if its shape
is not convex. If there is such a case in the input data, print the
centre anyway.
 
Sample Input
2
4
5 0
0 5
-5 0
0 -5
4
1 1
11 1
11 11
1 11
 
Sample Output
0.00 0.00
6.00 6.00
题意:已知一多边形没有边相交,质量分布均匀。顺序给出多边形的顶点坐标,求其重心。
分析:
求多边形重心的题目大致有这么几种:
①,质量集中在顶点上。n个顶点坐标为(xi,yi),质量为mi,则重心
  X = ∑( xi×mi ) / ∑mi
  Y = ∑( yi×mi ) / ∑mi
  特殊地,若每个点的质量相同,则
  X = ∑xi  / n
  Y = ∑yi  / n
②,质量分布均匀。这个题就是这一类型,算法和上面的不同。
  特殊地,质量均匀的三角形重心:
  X = ( x0 + x1 + x2 ) / 3
  Y = ( y0 + y1 + y2 ) / 3
③三角形面积公式:S =  ( (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) ) / 2 ;  (叉积除二)
因此做题步骤:1、将多边形分割成n-2个三角形,根据③公式求每个三角形面积。  
            2、根据②求每个三角形重心。  
            3、根据①求得多边形重心。 
package 数学题;

import java.text.DecimalFormat;
import java.util.Scanner; public class hdu_1115 {
static class point {
double x, y; point(double x, double y) {
this.x = x;
this.y = y;
}
} static point[] p; public static void main(String[] args) {
DecimalFormat df= (DecimalFormat)DecimalFormat.getInstance();
df.applyPattern("0.00");
Scanner sc = new Scanner(System.in);
int tcase = sc.nextInt();
while (tcase-- > 0) {
int n = sc.nextInt();
p = new point[n];
for (int i = 0; i < n; i++) {
double x = sc.nextDouble();
double y = sc.nextDouble();
p[i] = new point(x, y);
}
double s = 0,sum=0;
double gx = 0,gy=0;
for (int i = 1; i < n - 1; i++) {
s = getArea(p[i], p[i + 1], p[0]);
gx += s * (p[i].x + p[i + 1].x + p[0].x)/3;
gy += s * (p[i].y + p[i + 1].y + p[0].y)/3;
sum+=s;
}
double X = gx / sum;
double Y =gy / sum;
System.out.println(df.format(X)+" "+df.format(Y));
}
}
///叉积除二得面积
private static double getArea(point p1, point p2, point p) {
return ((p1.x - p.x) * (p2.y - p.y) - (p2.x - p.x) * (p1.y - p.y)) / 2;
}
}
 

hdu 1115(多边形重心问题)的更多相关文章

  1. hdu 3685 多边形重心+凸包

    Rotational Painting Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  2. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. hdu 1115(计算多边形重心)

    题意:已知一多边形没有边相交,质量分布均匀.顺序给出多边形的顶点坐标,求其重心. 分析: 求多边形重心的题目大致有这么几种: 1,质量集中在顶点上.n个顶点坐标为(xi,yi),质量为mi,则重心 X ...

  4. HDU 1115(求质量均匀分布的多边形重心 物理)

    题意是给一个 n 边形,给出沿逆时针方向分布的各顶点的坐标,求出 n 边形的重心. 求多边形重心的情况大致上有三种: 一.多边形的质量都分布在各顶点上,像是用轻杆连接成的多边形框,各顶点的坐标为Xi, ...

  5. HDOJ(1115)多边形重心

    Lifting the Stone http://acm.hdu.edu.cn/showproblem.php?pid=1115 题目描述:输入n个顶点(整数),求它们围成的多边形的重心. 算法:以一 ...

  6. hdu 1115 Lifting the Stone

    题目链接:hdu 1115 计算几何求多边形的重心,弄清算法后就是裸题了,这儿有篇博客写得很不错的: 计算几何-多边形的重心 代码如下: #include<cstdio> #include ...

  7. Lifting the Stone(多边形重心)

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  8. hdu1115 Lifting the Stone(几何,求多边形重心模板题)

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:pid=1115">http://acm.hdu.edu.cn/showproblem.php ...

  9. *HDU 1115 计算几何

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. WCF 动态调用(动态创建实例接口)

    很多时候,服务地址都不止一个的,这个时候就要动态去配置地址.配置Web.config,很麻烦 下面就看看怎样实现动态调用WCF. 首先看看动态创建服务对象的代码: using System; usin ...

  2. 使用锚点在HTML页面中快速移动

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  3. Hibernate关联映射之_一对一

    数据库模型 一般对一对一的关系而言,会存在一个主从关系.如 人 与 身份证,就是一个一对一关系, 人 是主,身份证 是从 Person PK:id name age Id_Card PK.FK:id ...

  4. BEGIN TRAN;

    USE master Create Database TestDb on Primary ( name='TestDb_data', filename='G:\TempData\Db\TestDb_d ...

  5. BZOJ 2707: [SDOI2012]走迷宫 拓扑+高斯消元+期望概率dp+Tarjan

    先Tarjan缩点 强连通分量里用高斯消元外面直接转移 注意删掉终点出边和拓扑 #include<cstdio> #include<cstring> #include<a ...

  6. 微信小程序使用Socket

    首先,一个小程序同时只能有一个WebSocket连接,如果当前已经存在一个WebSocket连接,会关闭当前连接,并重新建立一个连接. 其次,如果使用了appID,协议必须是 wss://... 最近 ...

  7. 如何使用Navicat备份数据库脚本

    Navicat是一个实用的工具,可以用来备份数据库(Oracle.MySQL.SQLServer)脚本. 备份步骤如下: 1.打开已建立的数据库连接,鼠标右键点击,选择[转储SQL文件]->[结 ...

  8. Educational Codeforces Round 55 (Rated for Div. 2):C. Multi-Subject Competition

    C. Multi-Subject Competition 题目链接:https://codeforces.com/contest/1082/problem/C 题意: 给出n个信息,每个信息包含专业编 ...

  9. POJ 2398 Toy Storage 二分+叉积

    Description Mom and dad have a problem: their child, Reza, never puts his toys away when he is finis ...

  10. <video>标签的特性

    以前的网页视频 过去还没有HTML5的时候,我们处理网页视频的时候,都是通过Flash插件来实现的,然而,并非所有浏览器都有同样的插件. 现在有了HTML5带来的video元素,开发者能够很方便地将视 ...