Lifting the Stone

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6971    Accepted Submission(s): 2919

Problem Description
There
are many secret openings in the floor which are covered by a big heavy
stone. When the stone is lifted up, a special mechanism detects this and
activates poisoned arrows that are shot near the opening. The only
possibility is to lift the stone very slowly and carefully. The ACM team
must connect a rope to the stone and then lift it using a pulley.
Moreover, the stone must be lifted all at once; no side can rise before
another. So it is very important to find the centre of gravity and
connect the rope exactly to that point. The stone has a polygonal shape
and its height is the same throughout the whole polygonal area. Your
task is to find the centre of gravity for the given polygon.
 
Input
The
input consists of T test cases. The number of them (T) is given on the
first line of the input file. Each test case begins with a line
containing a single integer N (3 <= N <= 1000000) indicating the
number of points that form the polygon. This is followed by N lines,
each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These
numbers are the coordinates of the i-th point. When we connect the
points in the given order, we get a polygon. You may assume that the
edges never touch each other (except the neighboring ones) and that they
never cross. The area of the polygon is never zero, i.e. it cannot
collapse into a single line.
 
Output
Print
exactly one line for each test case. The line should contain exactly
two numbers separated by one space. These numbers are the coordinates of
the centre of gravity. Round the coordinates to the nearest number with
exactly two digits after the decimal point (0.005 rounds up to 0.01).
Note that the centre of gravity may be outside the polygon, if its shape
is not convex. If there is such a case in the input data, print the
centre anyway.
 
Sample Input
2
4
5 0
0 5
-5 0
0 -5
4
1 1
11 1
11 11
1 11
 
Sample Output
0.00 0.00
6.00 6.00
题意:已知一多边形没有边相交,质量分布均匀。顺序给出多边形的顶点坐标,求其重心。
分析:
求多边形重心的题目大致有这么几种:
①,质量集中在顶点上。n个顶点坐标为(xi,yi),质量为mi,则重心
  X = ∑( xi×mi ) / ∑mi
  Y = ∑( yi×mi ) / ∑mi
  特殊地,若每个点的质量相同,则
  X = ∑xi  / n
  Y = ∑yi  / n
②,质量分布均匀。这个题就是这一类型,算法和上面的不同。
  特殊地,质量均匀的三角形重心:
  X = ( x0 + x1 + x2 ) / 3
  Y = ( y0 + y1 + y2 ) / 3
③三角形面积公式:S =  ( (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) ) / 2 ;  (叉积除二)
因此做题步骤:1、将多边形分割成n-2个三角形,根据③公式求每个三角形面积。  
            2、根据②求每个三角形重心。  
            3、根据①求得多边形重心。 
package 数学题;

import java.text.DecimalFormat;
import java.util.Scanner; public class hdu_1115 {
static class point {
double x, y; point(double x, double y) {
this.x = x;
this.y = y;
}
} static point[] p; public static void main(String[] args) {
DecimalFormat df= (DecimalFormat)DecimalFormat.getInstance();
df.applyPattern("0.00");
Scanner sc = new Scanner(System.in);
int tcase = sc.nextInt();
while (tcase-- > 0) {
int n = sc.nextInt();
p = new point[n];
for (int i = 0; i < n; i++) {
double x = sc.nextDouble();
double y = sc.nextDouble();
p[i] = new point(x, y);
}
double s = 0,sum=0;
double gx = 0,gy=0;
for (int i = 1; i < n - 1; i++) {
s = getArea(p[i], p[i + 1], p[0]);
gx += s * (p[i].x + p[i + 1].x + p[0].x)/3;
gy += s * (p[i].y + p[i + 1].y + p[0].y)/3;
sum+=s;
}
double X = gx / sum;
double Y =gy / sum;
System.out.println(df.format(X)+" "+df.format(Y));
}
}
///叉积除二得面积
private static double getArea(point p1, point p2, point p) {
return ((p1.x - p.x) * (p2.y - p.y) - (p2.x - p.x) * (p1.y - p.y)) / 2;
}
}
 

hdu 1115(多边形重心问题)的更多相关文章

  1. hdu 3685 多边形重心+凸包

    Rotational Painting Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  2. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. hdu 1115(计算多边形重心)

    题意:已知一多边形没有边相交,质量分布均匀.顺序给出多边形的顶点坐标,求其重心. 分析: 求多边形重心的题目大致有这么几种: 1,质量集中在顶点上.n个顶点坐标为(xi,yi),质量为mi,则重心 X ...

  4. HDU 1115(求质量均匀分布的多边形重心 物理)

    题意是给一个 n 边形,给出沿逆时针方向分布的各顶点的坐标,求出 n 边形的重心. 求多边形重心的情况大致上有三种: 一.多边形的质量都分布在各顶点上,像是用轻杆连接成的多边形框,各顶点的坐标为Xi, ...

  5. HDOJ(1115)多边形重心

    Lifting the Stone http://acm.hdu.edu.cn/showproblem.php?pid=1115 题目描述:输入n个顶点(整数),求它们围成的多边形的重心. 算法:以一 ...

  6. hdu 1115 Lifting the Stone

    题目链接:hdu 1115 计算几何求多边形的重心,弄清算法后就是裸题了,这儿有篇博客写得很不错的: 计算几何-多边形的重心 代码如下: #include<cstdio> #include ...

  7. Lifting the Stone(多边形重心)

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  8. hdu1115 Lifting the Stone(几何,求多边形重心模板题)

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:pid=1115">http://acm.hdu.edu.cn/showproblem.php ...

  9. *HDU 1115 计算几何

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. 浅谈c语言和c++中struct的区别

    今天做二叉树的时候,发现利用结构体有点乱,不知道怎么回事,我之前知道c语言中声明一个结构体变量时需要通过 struct 结构体名 变量名,而在c++中,可以不要struct,由于可以利用typedef ...

  2. 5for Java

    ① 从字符串“耿丹计算机Java20170320”中提取日期 public class Xx1 { /** * @param args */ public static void main(Strin ...

  3. systemtap如何写C函数 捎带着看看ret kprobe怎么用

    在systemstap中自定义函数 Embedded C can be the body of a script function. Instead enclosing the function bo ...

  4. Documentation & Markdown

    Documentation & Markdown markdown to document & document website generator https://github.co ...

  5. 【python】python 中的三元表达式(三目运算符)

    python中的三目运算符不像其他语言其他的一般都是 判定条件?为真时的结果:为假时的结果 如 result=5>3?1:0 这个输出1,但没有什么意义,仅仅是一个例子.而在python中的格式 ...

  6. 安装全局webpack

    npm ls webpack 和npm ls webpack -g 查看本地和全局版本 npm install webpack@1.15.0 -g 全局 然后到项目里面 npm install npm ...

  7. [Leetcode] Convert sorted list to binary search tree 将排好的链表转成二叉搜索树

    ---恢复内容开始--- Given a singly linked list where elements are sorted in ascending order, convert it to ...

  8. VC++使用CImage在内存中Bmp转换Jpeg图片

    之前写了一篇<VC++使用CImage在内存中Jpeg转换Bmp图片>,通过CImage实现了在内存中Jpeg转Bmp. 既然Jpeg能转Bmp,那CImage也支持Bmp转Jpeg,与上 ...

  9. Java Error: Failed to validate certificate. The application will not be executed

    Hi, last week a customer had the problem that he wants to connect to the administration interface of ...

  10. Spring学习-- AOP入门动态代理

    AOP 的拦截功能是由 java 中的动态代理来实现的.说白了,就是在目标类的基础上增加切面逻辑,生成增强的目标类(该切面逻辑或者在目标类函数执行之前,或者目标类函数执行之后,或者在目标类函数抛出异常 ...