package s.b.foo.caze.thread;

import java.io.Serializable;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit; public class TestThreadPool {
private static final int minThreadSize=10; //线程池最小的线程数量
private static final int maxThreadSize=15; //线程池最大的线程数量
private static final int keepAliveTime=3; //空闲时间
public static void main(String[] args) {
// 构造一个线程池
ThreadPoolExecutor threadPool = new ThreadPoolExecutor(
minThreadSize,maxThreadSize,keepAliveTime,
TimeUnit.SECONDS,
new ArrayBlockingQueue<Runnable>(12),
new ThreadPoolExecutor.CallerRunsPolicy());
for (int i = 1; i <= 10; i++) {//产生10个线程
try {
if(i == 8){
threadPool.shutdown();//全部任务完成后,关闭线程池
}
threadPool.execute(new ThreadPoolTask("test "+i));// 产生一个任务,并将其加入到线程池
} catch (Exception e) {
e.printStackTrace();
}
}
if(threadPool.isShutdown()){
System.out.println("关闭线程池");
}
if(threadPool.isTerminated()){
System.out.println("全部任务都已经完成了");
}
System.out.println(threadPool.getQueue().size()); } public static class ThreadPoolTask implements Runnable, Serializable {
private static final long serialVersionUID = 0;
private Object threadPoolTaskData; // 保存任务所需要的数据,并通过构造器给其赋值 ThreadPoolTask(Object tasks) {
this.threadPoolTaskData = tasks;
} public void run() {
System.out.println("start .." + threadPoolTaskData);
threadPoolTaskData = null; //将任务所需数据置为空
} public Object getTask() {
return this.threadPoolTaskData;
}
}
}
package s.b.foo.caze.thread; import java.io.Serializable;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit; public class TestThreadPool {
private static final int minThreadSize=10; //线程池最小的线程数量
private static final int maxThreadSize=15; //线程池最大的线程数量
private static final int keepAliveTime=3; //空闲时间
public static void main(String[] args) {
// 构造一个线程池
ThreadPoolExecutor threadPool = new ThreadPoolExecutor(
minThreadSize,maxThreadSize,keepAliveTime,
TimeUnit.SECONDS,
new ArrayBlockingQueue<Runnable>(12),
new ThreadPoolExecutor.CallerRunsPolicy());
for (int i = 1; i <= 10; i++) {//产生10个线程
try {
if(i == 8){
threadPool.shutdown();//全部任务完成后,关闭线程池
}
threadPool.execute(new ThreadPoolTask("test "+i));// 产生一个任务,并将其加入到线程池
} catch (Exception e) {
e.printStackTrace();
}
}
if(threadPool.isShutdown()){
System.out.println("关闭线程池");
}
if(threadPool.isTerminated()){
System.out.println("全部任务都已经完成了");
}
System.out.println(threadPool.getQueue().size()); } public static class ThreadPoolTask implements Runnable, Serializable {
private static final long serialVersionUID = 0;
private Object threadPoolTaskData; // 保存任务所需要的数据,并通过构造器给其赋值 ThreadPoolTask(Object tasks) {
this.threadPoolTaskData = tasks;
} public void run() {
System.out.println("start .." + threadPoolTaskData);
threadPoolTaskData = null; //将任务所需数据置为空
} public Object getTask() {
return this.threadPoolTaskData;
}
}
}

在Java的多线程中,有时候我们需要用到多线程,一般分为两种情况的使用方式:第一是线程之间没有数据交互,第二是线程之间存在某种联系即“工作队列”。如下载文件:第一种方式是每个线程下载一个文件,第二种方式是多个线程同时下载同一份文件。

线程池类为java.util.concurrent.ThreadPoolExecutor,

常用构造方法为:

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize,

long keepAliveTime, TimeUnit unit,BlockingQueue<Runnable> workQueue,RejectedExecutionHandler handler)

构造方法参数详解:

corePoolSize:线程池维护线程的最少数量

maximumPoolSize:线程池维护线程的最大数量

keepAliveTime:线程池维护线程所允许的空闲时间

unit:线程池维护线程所允许的空闲时间的单位

workQueue:线程池所使用的缓冲队列

handler:线程池对拒绝任务的处理策略

一个任务通过execute(Runnable)方法被添加到线程池,任务就是一个Runnable类型的对象,任务的执行方法就是Runnable类型对象的run()方法。

调用规则:

当一个任务通过execute(Runnable)方法欲添加到线程池时:

如果此时线程池中的数量小于corePoolSize,即使线程池中的线程都处于空闲状态,也要创建新的线程来处理被添加的任务。

如果此时线程池中的数量等于corePoolSize,但是缓冲队列workQueue未满,那么任务被放入缓冲队列。

如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量小于maximumPoolSize,建新的线程来处理被添加的任务。

如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量等于maximumPoolSize,那么通过handler所指定的策略来处理此任务。也就是:处理任务的优先级为:核心线程corePoolSize、任务队列workQueue、最大线程maximumPoolSize,如果三者都满了,使用handler处理被拒绝的任务。

当线程池中的线程数量大于corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止。这样,线程池可以动态的调整池中的线程数。

unit可选的参数为:

java.util.concurrent.TimeUnit.NANOSECONDS   毫微秒

java.util.concurrent.TimeUnit.MICROSECONDS  微秒

java.util.concurrent.TimeUnit.MILLISECONDS     毫秒

java.util.concurrent.TimeUnit.SECONDS               秒

workQueue我常用的是:java.util.concurrent.ArrayBlockingQueue

handler有四个选择:

ThreadPoolExecutor.AbortPolicy()抛出java.util.concurrent.RejectedExecutionException异常

ThreadPoolExecutor.CallerRunsPolicy()重试添加当前的任务,他会自动重复调用execute()方法

ThreadPoolExecutor.DiscardOldestPolicy()抛弃旧的任务

ThreadPoolExecutor.DiscardPolicy()抛弃当前的任务

下面是如何一个简单示例:

java线程池ThreadPoolExecutor的使用的更多相关文章

  1. Java线程池ThreadPoolExecutor使用和分析(三) - 终止线程池原理

    相关文章目录: Java线程池ThreadPoolExecutor使用和分析(一) Java线程池ThreadPoolExecutor使用和分析(二) - execute()原理 Java线程池Thr ...

  2. Java线程池ThreadPoolExecutor使用和分析(二) - execute()原理

    相关文章目录: Java线程池ThreadPoolExecutor使用和分析(一) Java线程池ThreadPoolExecutor使用和分析(二) - execute()原理 Java线程池Thr ...

  3. Java线程池ThreadPoolExecutor使用和分析(一)

    相关文章目录: Java线程池ThreadPoolExecutor使用和分析(一) Java线程池ThreadPoolExecutor使用和分析(二) - execute()原理 Java线程池Thr ...

  4. Java线程池ThreadPoolExecutor类源码分析

    前面我们在java线程池ThreadPoolExecutor类使用详解中对ThreadPoolExector线程池类的使用进行了详细阐述,这篇文章我们对其具体的源码进行一下分析和总结: 首先我们看下T ...

  5. java线程池ThreadPoolExecutor使用简介

    一.简介线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为:ThreadPoolExecutor(int corePoolSize, int m ...

  6. Java 线程池(ThreadPoolExecutor)原理分析与使用

    在我们的开发中"池"的概念并不罕见,有数据库连接池.线程池.对象池.常量池等等.下面我们主要针对线程池来一步一步揭开线程池的面纱. 使用线程池的好处 1.降低资源消耗 可以重复利用 ...

  7. Java 线程池(ThreadPoolExecutor)原理解析

    在我们的开发中“池”的概念并不罕见,有数据库连接池.线程池.对象池.常量池等等.下面我们主要针对线程池来一步一步揭开线程池的面纱. 有关java线程技术文章还可以推荐阅读:<关于java多线程w ...

  8. Java线程池(ThreadPoolExecutor)原理分析与使用

    在我们的开发中"池"的概念并不罕见,有数据库连接池.线程池.对象池.常量池等等.下面我们主要针对线程池来一步一步揭开线程池的面纱. 使用线程池的好处 1.降低资源消耗 可以重复利用 ...

  9. 转:JAVA线程池ThreadPoolExecutor与阻塞队列BlockingQueue

    从Java5开始,Java提供了自己的线程池.每次只执行指定数量的线程,java.util.concurrent.ThreadPoolExecutor 就是这样的线程池.以下是我的学习过程. 首先是构 ...

随机推荐

  1. javascript获取和判断浏览器窗口、屏幕、网页的高度、宽度等

    主要介绍了javascript获取和判断浏览器窗口.屏幕.网页的高度.宽度等 scrollHeight: 获取对象的滚动高度.scrollLeft:设置或获取位于对象左边界和窗口中目前可见内容的最左端 ...

  2. 在C的头文件中定义的结构体,如何在cpp文件中引用

    解决方案1:在cpp文件中放置.c,且在该文件中引用变量 解决方案2:在一个cpp文件中包含.c,但在另一个cpp文件中使用结构体变量 cpp文件1 cpp文件2 #include "dia ...

  3. C#的23种设计模式概括

    创建型:         1. 单件模式(Singleton Pattern)         2. 抽象工厂(Abstract Factory)         3. 建造者模式(Builder) ...

  4. 【题解】IOI2005River 河流

    一节语文课想出来的玩意儿,调了几个小时……可见细心&好的代码习惯是有多么的重要 (:へ:) 不过,大概竞赛最令人开心的就是能够一点一点的感受到自己的进步吧,一天比一天能够自己想出更多的题,A题 ...

  5. Laravel中Redis的使用

    安装 laravel中使用redis首先需要你通过 Composer 安装 predis/predis 包: composer require predis/predis 配置 redis的配置文件是 ...

  6. Linux总结(二)

      1. 虚拟机安装 a)双系统(不建议初学者一开始去装) b)般建议使用虚拟机来操作试验环境 c)好处:可以模拟真实的环境进行各种的试验和操作 d)在启动之后,在操作的时候会占用一部分的系统资源 1 ...

  7. React生命周期总结

    React的生命周期总共8个钩子,三个will,两个Did,一个RecciveProps,一个ShouldUpdate,一个render.分为三个阶段,分别是 装载 Mounting更新 Updati ...

  8. Phaser的timer用法

    1. 延迟timer,相当于setTimeout game.time.events.add(Phaser.Timer.SECOND*5,this.delayOver,this); 2. 循环timer ...

  9. oracle与mysql与sqlserver的分页

    假设当前是第PageNo页,每页有PageSize条记录,现在分别用Mysql.Oracle和SQL Server分页查询student表. 1.Mysql的分页查询: 1 SELECT 2 * 3 ...

  10. #error#storyboard#xib#解决方案

      https://www.evernote.com/shard/s227/sh/cad7d5f5-8e81-4b3b-908f-5d8eee7d11e2/928786149cf9a103a74626 ...