spark第三篇:Cluster Mode Overview 集群模式预览
Spark applications run as independent sets of processes on a cluster, coordinated by the SparkContext object in your main program (called the driver program).
Specifically, to run on a cluster, the SparkContext can connect to several types of cluster managers (either Spark’s own standalone cluster manager, Mesos or YARN), which allocate resources across applications. Once connected, Spark acquires executors on nodes in the cluster, which are processes that run computations and store data for your application. Next, it sends your application code (defined by JAR or Python files passed to SparkContext) to the executors. Finally, SparkContext sends tasks to the executors to run.

There are several useful things to note about this architecture:
1、Each application gets its own executor processes, which stay up for the duration of the whole application and run tasks in multiple threads. This has the benefit of isolating applications from each other, on both the scheduling side (each driver schedules its own tasks) and executor side (tasks from different applications run in different JVMs). However, it also means that data cannot be shared across different Spark applications (instances of SparkContext) without writing it to an external storage system.
2、Spark is agnostic to the underlying cluster manager. As long as it can acquire executor processes, and these communicate with each other, it is relatively easy to run it even on a cluster manager that also supports other applications (e.g. Mesos/YARN).
3、The driver program must listen for and accept incoming connections from its executors throughout its lifetime (e.g., see spark.driver.port in the network config section). As such, the driver program must be network addressable from the worker nodes.
4、Because the driver schedules tasks on the cluster, it should be run close to the worker nodes, preferably on the same local area network. If you’d like to send requests to the cluster remotely, it’s better to open an RPC to the driver and have it submit operations from nearby than to run a driver far away from the worker nodes.
应用程序可以使用spark-submit脚本提交。参考application submission guide
每一个驱动程序都有一个Web UI(默认4040端口),显示正在执行的任务、执行程序和存储使用等信息。可通过http://<driver-node>:4040访问该页面。参考Monitoring and Instrumentation
Spark可以跨应用程序和应用程序内进行资源分配控制。参考Job Scheduling
术语表
| Term | Meaning |
|---|---|
| Application | User program built on Spark. Consists of a driver program and executors on the cluster. |
| Application jar |
A jar containing the user's Spark application. In some cases users will want to create an "uber jar" containing their application along with its dependencies. The user's jar should never include Hadoop or Spark libraries, however, these will be added at runtime. |
| Driver program | The process running the main() function of the application and creating the SparkContext |
| Cluster manager | An external service for acquiring resources on the cluster (e.g. standalone manager, Mesos, YARN) |
| Deploy mode |
Distinguishes where the driver process runs. In "cluster" mode, the framework launches the driver inside of the cluster. In "client" mode, the submitter launches the driver outside of the cluster. |
| Worker node | Any node that can run application code in the cluster |
| Executor |
A process launched for an application on a worker node, that runs tasks and keeps data in memory or disk storage across them. Each application has its own executors. |
| Task | A unit of work that will be sent to one executor |
| Job |
A parallel computation consisting of multiple tasks that gets spawned in response to a Spark action (e.g. |
| Stage |
Each job gets divided into smaller sets of tasks called stages that depend on each other (similar to the map and reduce stages in MapReduce); |
spark第三篇:Cluster Mode Overview 集群模式预览的更多相关文章
- Spark 官方文档(2)——集群模式
Spark版本:1.6.2 简介:本文档简短的介绍了spark如何在集群中运行,便于理解spark相关组件.可以通过阅读应用提交文档了解如何在集群中提交应用. 组件 spark应用程序通过主程序的Sp ...
- Apache Spark 2.2.0 中文文档 - 集群模式概述 | ApacheCN
集群模式概述 该文档给出了 Spark 如何在集群上运行.使之更容易来理解所涉及到的组件的简短概述.通过阅读 应用提交指南 来学习关于在集群上启动应用. 组件 Spark 应用在集群上作为独立的进程组 ...
- Redis集群功能预览
目前Redis Cluster仍处于Beta版本,Redis 3.0将会加入,在此可以先对其主要功能和原理进行一个预览.参考<Redis Cluster - a pragmatic approa ...
- redis迁移第三篇(cluster forget)
1.删除错误节点,带有 fail,noaddr , 这种需要用 cluster forget redis集群迁移之后,由于之前的误操作,导致pod日志里面出现这样的错误,出现一会好一会不好的情况,就是 ...
- Spark集群模式概述
作者:foreyou出处:http://www.foreyou.net/2015/06/22/spark-cluster-mode-overview/声明:本文采用以下协议进行授权: 署名-非商用|C ...
- Spark集群模式&Spark程序提交
Spark集群模式&Spark程序提交 1. 集群管理器 Spark当前支持三种集群管理方式 Standalone-Spark自带的一种集群管理方式,易于构建集群. Apache Mesos- ...
- 编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本]
编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本] 1. 开发环境 Jdk 1.7.0_72 Maven 3.2.1 Scala 2.10.6 Spark 1.6 ...
- 近千节点的Redis Cluster高可用集群案例:优酷蓝鲸优化实战(摘自高可用架构)
(原创)2016-07-26 吴建超 高可用架构导读:Redis Cluster 作者建议的最大集群规模 1,000 节点,目前优酷在蓝鲸项目中管理了超过 700 台节点,积累了 Redis Clus ...
- 超详细,多图文使用galera cluster搭建mysql集群并介绍wsrep相关参数
超详细,多图文使用galera cluster搭建mysql集群并介绍wsrep相关参数 介绍galera cluster原理的文章已经有一大堆了,百度几篇看一看就能有相关了解,这里就不赘述了.本文主 ...
随机推荐
- 基于任务的异步编程模式,Task-based Asynchronous Pattern
术语: APM 异步编程模型,Asynchronous Programming Model,其中异步操作由一对 Begin/End 方法(如 FileStream.BeginRea ...
- Linq学习<二>
http://www.cnblogs.com/wyqlijin/archive/2011/02/25/1964934.html 这位仁兄写的比较高深,建议大家看看 一: 这一篇以一个数据类为例,操作数 ...
- 编写高质量代码改善C#程序的157个建议——建议26:使用匿名类型存储LINQ查询结果
建议26:使用匿名类型存储LINQ查询结果 从.NET3.0开始,C#开始支持一个新特性:匿名类型.匿名类型有var.赋值运算符和一个非空初始值(或以new开头的初始化项)组成.匿名类型有如下基本特性 ...
- Alpha冲刺(三)
Information: 队名:彳艮彳亍团队 组长博客:戳我进入 作业博客:班级博客本次作业的链接 Details: 组员1(组长)柯奇豪 过去两天完成了哪些任务 ssm框架的使用并实现简单的数据处理 ...
- Header Only Library
什么是Header Only Library Header Only Library把一个库的内容完全写在头文件中,不带任何cpp文件. 这是一个巧合,决不是C++的原始设计. 第一次这么做估计是ST ...
- Boost 安装详解
一 Linux(redhat)篇 1.1 获取boost库 解压tar -zxvf boost_1.48.0.tar.gz 进入解压目录cd boost_1_48_0 1.2 编译安装 使用下面的命令 ...
- Go 的垃圾回收机制在实践中有哪些需要注意的地方(转)
在网上看到一篇非常好的文章http://www.zhihu.com/question/21615032,转载如下: go的gc还不完善但也不算不靠谱,关键看怎么用,尽量不要创建大量对象,也尽量不要频繁 ...
- laravel中chunk方法使用外部变量以及改变该变量
- MarkdownPad基于语法示例
博客园 [有道] (https://www.zybuluo.com/mdeditor#) [Markdown语法教学链接] (https://www.cnblogs.com/chimoxuanzhi/ ...
- 洛谷P4526 【模板】自适应辛普森法2(Simpson法)
题面 传送门 题解 据说这函数在\(x>15\)的时候趋近于\(0\) 据说当且仅当\(a<0\)时积分发散 所以直接套自适应\(simpson\)吧-- //minamoto #incl ...