Description

As we all know caterpillars love to eat leaves. Usually, a caterpillar sits on leaf, eats as much of it as it can (or wants), then stretches out to its full length to reach a new leaf with its front end, and finally "hops" to it by contracting its back end to that leaf.

We have with us a very long, straight branch of a tree with leaves distributed uniformly along its length, and a set of caterpillars sitting on the first leaf. (Well, our leaves are big enough to accommodate upto 20 caterpillars!). As time progresses our caterpillars eat and hop repeatedly, thereby damaging many leaves. Not all caterpillars are of the same length, so different caterpillars may eat different sets of leaves. We would like to find out the number of leaves that will be undamaged at the end of this eating spree. We assume that adjacent leaves are a unit distance apart and the length of the caterpillars is also given in the same unit.

For example suppose our branch had 20 leaves (placed 1 unit apart) and 3 caterpillars of length 3, 2 and 5 units respectively. Then, first caterpillar would first eat leaf 1, then hop to leaf 4 and eat it and then hop to leaf 7 and eat it and so on. So the first caterpillar would end up eating the leaves at positions 1,4,7,10,13,16 and 19. The second caterpillar would eat the leaves at positions 1,3,5,7,9,11,13,15,17 and 19. The third caterpillar would eat the leaves at positions 1,6,11 and 16. Thus we would have undamaged leaves at positions 2,8,12,14,18 and 20. So the answer to this example is 6.

Input

The first line of the input contains two integers N and K, where N is the number of leaves and K is the number of caterpillars. Lines 2,3,...,K+1 describe the lengths of the K caterpillars. Line i+1 (1 ≤ i ≤ K) contains a single integer representing the length of the ith caterpillar.

You may assume that 1 ≤ N ≤ 1000000000 and 1 ≤ K≤ 20. The length of the caterpillars lie between 1 and N.

Output

A line containing a single integer, which is the number of leaves left on the branch after all the caterpillars have finished their eating spree.

Sample Input

20 3
3
2
5

Sample Output

6

Hint

You may use 64-bit integers (__int64 in C/C++) to avoid errors while multiplying large integers. The maximum value you can store in a 32-bit integer is 2^31-1, which is approximately 2 * 10^9. 64-bit integers can store values greater than 10^18.

Source

TOJ

这题的大概意思是:
有N个数,从1开始开始走每次走M个数,然后求没有走过的数的个数。
比如N=20,从1开始走每次走3步,即走到的数有1,4,7,10,13,16,19;
从1开始走每次走2步,即走到的数有1,3,5,7,9,11,13,15,17,19;
从1开始走每次走5步,即走到的数有1,6,11,16;
最后有2,8,12,14,18,20没有走到,一共有6个数,所以输出6。

这题可以转换成从1-20之间找出不被2,3,5整除的个数,根据容斥定理,解得此题!

【容斥定理】
|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C|

相交表示N个条件同时符合。

 #include <stdio.h>
__int64 N,K,V[];
__int64 sum; __int64 gcd(__int64 a, __int64 b){
if(a%b==)return b;
else return gcd(b,a%b);
}
__int64 lcm(__int64 a, __int64 b){
return a/gcd(a,b)*b;
} void dfs(int i, int flag, __int64 v){
if(i==K){
if(flag> && flag%){
sum+=(N-)/v;
}else if(flag> && !(flag%)){
sum-=(N-)/v;
}
return;
}
dfs(i+,flag,v);
dfs(i+,flag+,lcm(V[i],v));
}
int main()
{
while(scanf("%I64d %I64d",&N,&K)!=EOF){
for(int i=; i<K; i++){
scanf("%I64d",&V[i]);
}
sum=;
dfs(,,);
printf("%I64d\n",N-sum);
}
return ;
}

TOJ 4008 The Leaf Eaters(容斥定理)的更多相关文章

  1. TOJ 4008 The Leaf Eaters

    |A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C| 这个是集合的容斥,交集差集什么的,这个在概率论经常用到吧 4008: The Leaf Eaters   T ...

  2. HDU 1796How many integers can you find(简单容斥定理)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  3. Codeforces Round #330 (Div. 2) B. Pasha and Phone 容斥定理

    B. Pasha and Phone Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/595/pr ...

  4. hdu_5213_Lucky(莫队算法+容斥定理)

    题目连接:hdu_5213_Lucky 题意:给你n个数,一个K,m个询问,每个询问有l1,r1,l2,r2两个区间,让你选取两个数x,y,x,y的位置为xi,yi,满足l1<=xi<=r ...

  5. How Many Sets I(容斥定理)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3556 How Many Sets I Time Limit: 2 ...

  6. HDU - 4135 Co-prime 容斥定理

    题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...

  7. BZoj 2301 Problem b(容斥定理+莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MB Submit: 7732  Solved: 3750 [Submi ...

  8. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  9. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. .net Reflection(反射)- 二

    反射 Reflection 中访问方法 新建一个ClassLibrary类库: public class Student { public string Name { get; set; } publ ...

  2. Block Formatting Contexts (块级格式化上下文) 详解

         最近在学习BootStrap框架,发现里面清除浮动的类 .clearfix 跟平时自己用的不太一样.它的样式是这样的: .clearfix:before { content: " ...

  3. storm集群快速搭建

    sudo mkdir /export/serverssudo chmod -R 777 /exportmkdir /export/servers tar -zxvf apache-storm-1.0. ...

  4. memcached装、启动和卸载

    1.下载相关软件: 下载地址:http://download.csdn.net/download/wangshuxuncom/8249501: 2.解压获取到的压缩文件,将得到一个名为“memcach ...

  5. Linux原理与实践

    Linux 中的文件及权限 -rwxr-xr-x 1 cat animal 68 03-31 21:47 sleep.sh 三种用户角色: r 4 w 2 x 1 user ,文件的所有者 group ...

  6. IPython绘图和可视化---matplotlib 入门

    最近总是需要用matplotlib绘制一些图,由于是新手,所以总是需要去翻书来找怎么用,即使刚用过的,也总是忘.所以,想写一个入门的教程,一方面帮助我自己熟悉这些函数,另一方面有比我还小白的新手可以借 ...

  7. Python3之Memcache使用

    简介 Memcached是一个高性能的分布式内存对象缓存系统,用于动态WEB应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态,数据库网站的速度.Memcached ...

  8. C# 获取类中属性注释值

    转 http://bbs.csdn.net/topics/350019800 PropertyInfo[] peroperties = typeof(TEST).GetProperties(Bindi ...

  9. 二分答案 & 洛谷 P2678 跳石头

    首先让我们先学一下二分答案这个东西...   二分答案,肯定与二分有关,还与可能是答案的东西有关... 二分答案的准确定义: 二分答案是指在答案具有单调性的前提下,利用二分的思想枚举答案,将求解问题转 ...

  10. grafana使用小节

    安装准备 安装grafana 安装mysql grafana操作步骤 新建数据源,支持mysql 数据库连接失败处理: https://www.jianshu.com/p/684bc3a77ac9 新 ...