1.来源
    设两数为a、b(a>b),求a和b最大公约数(a,b)的步骤如下:用a除以b,得a÷b=q......r1(0≤r1)。若r1=0,则(a,b)=b;若r1≠0,则再用b除以r1,得b÷r1=q......r2 (0≤r2).若r2=0,则(a,b)=r1,若r2≠0,则继续用r1除以r2,……如此下去,直到能整除为止。其最后一个为被除数的余数的除数即为(a, b)。
例如:a=25,b=15,a/b=1......10,b/10=1......5,10/5=2.......0,最后一个为被除数余数的除数就是5,5就是所求最大公约数。
2.原理

3.算法

自然语言描述
用辗转相除法确定两个正整数 a 和 b(a≥b) 的最大公因数gcd(a,b):
当a mod b=0 时gcd(a,b)=b,否则
gcd(a,b) = gcd(b,a mod b)
递归或循环运算得出结果
/**
*
* @return int
* @tags @param m
* @tags @param n
* @tags @return
* @todo 【方法二】利用辗除法
*/
public static int gcd(int m, int n) {
while (true) {
if ((m = m % n) == 0)
return n;
if ((n = n % m) == 0)
return m;
}
}
4.时间复杂度
辗转相除法的运算速度为 O(n),其中 n 为输入数值的位数。
辗转相除法处理大数时非常高效,它需要的步骤不会超过较小数的位数(十进制下)的五倍。加百利·拉梅(GabrielLamé)于1844年证明了这点,开创了计算复杂性理论。
5.应用
求不定方程的一组整数解方法
[注:以下出现的qi,ri括号中的是下标,gcd(a,b)为a,b的最大公约数]
辗转相除法可以求出特定条件的不定方程的一组整数解。
设不定方程为ax+by=c,其中a,b,c为整数,且 gcd(a,b) | c
a,b辗转相除的算式为
b=q1 a+r2
a=q2 r2+r3
r2=q3 r3+r4
...
rn-2=qn-1rn-1+rn
rn-1=qnrn
其中rn=gcd(a,b),不妨令b=r0,a=r1,rn+1=0
第i个算式为
ri-1= qi×ri+ ri+1
所以ri+1= ri-1 - qi×r(i)......(1)
用公式(1)可以得到rn=gcd(a,b)关于a,b的线性组合sa+tb=gcd(a,b)
所以不定方程a×x+b×y=c的一组特解为x=s×c/gcd(a,b) y=t×c/gcd(a,b)[1] 
举例说明
例如不定方程为326x+78y=4,求出一组整数解x,y
求(326,78)的算式为:
326=4*78+14
14=326-4*78
78=5*14+8
8=78-5*14
14=1*8+6
6=14-1*8
8=1*6+2
2=8-1*6
6=3*2
所以
2=8-6=8-(14-8)
=2*8-14=2*(78-5*14)-14
=2*78-11*14=2*78-11*(326-4*78)
=46*78-11*326
即2=(-11)*326+46*78
所以4=(-22)*326+92*78
所以x = - 22, y = 92是不定方程326x+78y=4的一组解。
6.相关原理
两个整数的最大公约数是能够同时整除它们的最大的正整数。
辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的相除余数的最大公约数。
例如,252和105的最大公约数是21(252 = 21 × 12;105 = 21 × 5);
因为252 ÷105 = 2......42,所以(105,42)是21。在这个过程中,较大的数缩小了,所以继续进行同样的计算可以不断缩小这两个数直至余数变为零。这时的除数就是所求的两个数的最大公约数。由辗转相除法也可以推出,两数的最大公约数可以用两数的整数倍相加来表示,如21 = 5 × 105 + (−2) × 252。这个重要的等式叫做贝祖等式(又称“裴蜀定理”)。
 

算法:辗转相除法【欧几里德算法(Euclidean algorithm)】的更多相关文章

  1. POJ 2773 Happy 2006(欧几里德算法)

    题意:给出一个数m,让我们找到第k个与m互质的数. 方法:这题有两种方法,一种是欧拉函数+容斥原理,但代码量较大,另一种办法是欧几里德算法,比较容易理解,但是效率很低. 我这里使用欧几里德算法,欧几里 ...

  2. 扩展欧几里德算法(递归及非递归实现c++版)

    今天终于弄懂了扩展欧几里德算法,有了自己的理解,觉得很神奇,就想着写一篇博客. 在介绍扩展欧几里德算法之前,我们先来回顾一下欧几里德算法. 欧几里德算法(辗转相除法): 辗转相除法求最大公约数,高中就 ...

  3. 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

    欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...

  4. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

  5. POJ 1061青蛙的约会(拓展欧几里德算法)

    题目链接: 传送门 青蛙的约会 Time Limit: 1000MS     Memory Limit: 65536K Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见 ...

  6. 欧几里德算法gcd及其拓展终极解释

    这个困扰了自己好久,终于找到了解释,还有自己改动了一点点,耐心看完一定能加深理解   扩展欧几里德算法-求解不定方程,线性同余方程. 设过s步后两青蛙相遇,则必满足以下等式: (x+m*s)-(y+n ...

  7. ACM_扩展欧几里德算法

    <pre name="code" class="cpp">/* 扩展欧几里德算法 基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表 ...

  8. 公钥密码之RSA密码算法扩展欧几里德求逆元!!

    扩展欧几里得求逆元 实话说这个算法如果手推的话问题不大,无非就是辗转相除法的逆过程,还有一种就是利用扩展欧几里德算法,学信安数学基础的时候问题不大,但现在几乎都忘了,刷题的时候也是用kuangbin博 ...

  9. [Python3 练习] 008 欧几里德算法

    题目:写个"欧几里德算法"的小程序 (1) 描述 我知识浅薄,一开始被"欧几里德"的大名唬住了,去搜了一下才知道这就是高中时学过的"辗转相除法&quo ...

  10. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

随机推荐

  1. [翻译] 带有震动效果的 ShakingAlertView

    ShakingAlertView  震动效果的AlertView https://github.com/lukestringer90/ShakingAlertView ShakingAlertView ...

  2. sqlite3.exe 使用

    1 下载sqlite3.exe 2 命令行cmd,进入到sqlite3.exe目录 3 >sqlite3.exe database.db   来打开sqlite数据库. 4 基本语法: > ...

  3. SVN中的Trunk、Tag、Brance的用法

    在SVN中Branch/tag在一个功能选项中,在使用中也往往产生混淆.在实现上,branch和tag,对于svn都是使用copy实现的,所以他们在默认的权限上和一般的目录没有区别.至于何时用tag, ...

  4. 谷歌死忠速查:可访问谷歌google搜索的IP们

    [见谅! 此文已废了,下面的办法已经无效了!]但是访问我博客并回复的哥们“问天何必”提供了一个方法,详见http://www.gaomn.com/,他提供了一个网站来访问google的,速度还算可以, ...

  5. Go 语言简介(下)— 特性

    希望你看到这篇文章的时候还是在公交车和地铁上正在上下班的时间,我希望我的这篇文章可以让你利用这段时间了解一门语言.当然,希望你不会因为看我的文章而错过站.呵呵. 如果你还不了解Go语言的语法,还请你移 ...

  6. Linux系统教程 标准输入/输出和重定向

    1. 标准输入与输出 我们知道,执行一个shell命令行时通常会自动打开三个标准文件,即标准输入文件(stdin),通常对应终端的键盘:标准输出文件(stdout)和标准错误输出文件(stderr), ...

  7. C# 特性(Attribute)(一)

    特性(Attributes)是一种崭新的声明性信息.我们不仅可以通过特性来定义设计层面的信息(例如help file, URL for documentation)以及运行时(run-time)信息( ...

  8. Style 的查找 FindResource

    1)根据名称查找 PrintPreview fe = new PrintPreview(new Summary()); string strResourceHeader = "headerS ...

  9. [jQuery] $.map, $.each, detach() , $.getJSOIN()

    $.map function will return the modifies array. $.each function will not new a new array, the old val ...

  10. 开放Fedora10自带的MySQL5.0.67的对外数据库服务

    MySQL5.0.67是Fedora10安装时的可选项目. 测试的笔记本IP为192.168.0.100,作为安装Fedora10和MySQL5.0.67的服务器BlackMachine的IP地址为1 ...