http://www.edn.com/design/analog/4337128/Make-a-DAC-with-a-microcontroller-s-PWM-timer

Many embedded-microcontroller applications require generation of analog signals. An integrated or stand-alone DAC fills the role. However, you can often use PWM signals for generating the required analog signals. You can use PWM signals to create both dc and ac analog signals. This Design Idea shows how to use a PWM timer to simultaneously create a sinusoid, a ramp, and a dc voltage. A PWM signal is a digital signal with fixed frequency but varying duty cycle. If the duty cycle of the PWM signal varies with time and you filter the PWM signal, the output of the filter is an analog signal (Figure 1).

If you build a PWM DAC in this manner, its resolution is equivalent to the resolution of the PWM signal you use to create the DAC. The PWM output signal requires a frequency that is equivalent to the update rate of the DAC, because each change in PWM duty cycle is the equivalent of one DAC sample. The frequency the PWM timer requires depends on the required PWM signal frequency and the desired resolution. The required frequency is FCLOCK=FPWM×2n, where FCLOCK is the required PWM-timer frequency, FPWM is the PWM-signal frequency, and n is the desired DAC resolution in bits.

Figure 2

depicts a circuit that delivers a 250-Hz sine wave, a 125-Hz ramp, and a dc signal. The desired sampling rate is 8 kHz (32 samples for each sine-wave cycle (16× oversampled), and 64 samples for each ramp cycle (32× oversampled)). These figures result in a required PWM-signal frequency of 8 kHz and a required PWM clock frequency of 2.048 MHz. It is usually best for the PWM signal frequency to be much higher than the desired bandwidth of the signals to be produced. Generally, the higher the PWM frequency, the lower the order of filter required and the easier it is to build a suitable filter. This design uses Timer B of the MSP430 in 16-bit mode and in "up" mode, in which the counter counts up to the contents of capture/compare register 0 (CCR0) and then restarts at zero. CCR0 is loaded with 255, thereby giving the counter an effective 8-bit length. You can find this register and others in a DAC demonstration program for the MSP430 microcontroller. Click here to download the program.

CCR1 and output TB1 produce the sine wave. CCR2 and TB2 generate the ramp, and CCR3 and TB3 yield the dc value. For each output, the output mode is the reset/set mode. In this mode, each output resets when the counter reaches the respective CCRx value and sets when the counter reaches the CCR0 value. This scheme provides positive pulses equivalent to the value in CCRx on each respective output. If you use the timer in 8-bit mode, the reset/set output mode is unavailable for the PWM outputs because the reset/set mode requires CCR0. The timer's clock rate is 2.048 MHz. Figure 3

shows the sine and ramp waveforms. The sine wave in this example uses 32 samples per cycle. The sample values are in a table at the beginning of the program. A pointer points to the next value in the sine table, so that, at the end of each PWM cycle, the new value of the sine wave is written to the capture/compare register of the PWM timer.

The ramp in this example does not require a table of data values. Rather, the ramp simply increments the duty cycle for each cycle of the PWM signal until it reaches the maximum and then starts over at the minimum duty cycle. This gradual increase in PWM-signal duty cycle results in a ramp voltage when the signal passes through a filter. You control the dc level by simply setting and not changing the value of the PWM-signal duty cycle. The dc level is directly proportional to the duty cycle of the PWM signal. Figure 2 shows the reconstruction filters used for each signal in this example. The filter for the ac signals is a simple two-pole, stacked-RC filter, which is simple and has no active components. This type of filter necessitates a higher sampling rate than would be required if the filter had a higher order. With the type of filter shown in Figure 2, you should use at least a 16× oversampling rate.

The filter yields its best response when R2>>R1. Also, setting the cutoff frequency too close to the bandwidth edge causes a fair amount of attenuation. To reduce the amount of attenuation in the filter, set the cutoff frequency above the bandwidth edge but much lower than the frequency of the PWM signal. The filter for the dc value serves for charge storage rather than ac-signal filtering. Therefore, it uses a simple, single-pole RC filter. Figure 4

shows the software flow for the DAC. After a reset, the routine stops the watchdog timer, configures the output ports, and sets up the clock system. Next, the software calls a delay to allow the 32,768-Hz crystal to stabilize to calibrate the DCO (digitally controlled oscillator).

Next, the routine calls the calibration routine to set the operating frequency to 2.048 MHz. After the DCO calibration, the program sets up Timer_B, CCR1 and CCR2 for PWM generation and then starts the timer. Finally, the MSP430 goes into low-power mode 0 (LPM0) to conserve power. The CPU wakes up to handle each CCIFG0 interrupt from the PWM timer and then re-enters LPM0. (See references 1, 2, and 3 for more information on the DCO and the MSP430 family.)

Make a DAC with a microcontroller's PWM timer的更多相关文章

  1. 【STM32】PWM DAC基本原理(实验:PWM实现DAC)

    虽然STM32F103ZET6具有内部DAC,但是也仅仅只有两条DAC通道,并且STM32还有其他的很多型号是没有DAC的.通常情况下,采用专用的D/A芯片来实现,但是这样就会带来成本的增加. 不过S ...

  2. Create a DAC from a microcontroller's ADC

    Few microcontrollers include a DAC. Although you can easily find an inexpensive DAC to control from ...

  3. Cortex-A9 PWM Timer

    PWM定时器        4412时钟为我们提供了PWM定时器,在4412中共有5个32位的定时器,这些定时器可发送中断信号给ARM子系统.另外,定时器0.1.2.3包含了脉冲宽度调制(PWM),并 ...

  4. PWM DAC vs. Standalone

    http://analogtalk.com/?p=534 http://analogtalk.com/?p=551 Posted by AnalogAdvocate on April 09, 2010 ...

  5. PWM DAC Low Pass Filtering

    [TI博客大赛][原创]LM3S811之基于PWM的DAC http://bbs.ednchina.com/BLOG_ARTICLE_3005301.HTM http://www.fpga4fun.c ...

  6. how to generate an analog output from a in-built pwm of Atmega 32AVR microcontrloller?

    how to generate an analog output from a in-built pwm of Atmega 32AVR microcontrloller? you need a re ...

  7. M451 PWM对照数据手册分析

    PWM_T Struct Reference Control Register » Pulse Width Modulation Controller(PWM)   typedef struct { ...

  8. 说说M451例程之PWM的寄存器讲解

    M451提供了两路PWM发生器.每路PWM支持6通道PWM输出或输入捕捉.有一个12位的预分频器把时钟源分频后输入给16位的计数器,另外还有一个16位的比较器.PWM计数器支持向上,向下,上下计数方式 ...

  9. 说说M451例程之PWM

    /**************************************************************************//** * @file main.c * @ve ...

随机推荐

  1. Linux 相关

    一.WCHAN的含义 WCHAN 进程正在睡眠的内核函数名称:该函数的名称是从/root/system.map文件中获得的. 参考:解析ANDROID ps命令执行后各项参数的含义 二.查看线程 ps ...

  2. 判断一个字符是否为数字的两种方法(C/C++)

    在平时,我们经常遇见判断字符是否为数字这种题目,虽然感觉还是很简单,不过我是个更喜欢用函数的人,因为我觉得这样更便捷,所以我更推荐第二种方式. 1.直接判断 #include <stdio.h& ...

  3. 【PAT】1015 德才论 (25)(25 分)

    1015 德才论 (25)(25 分) 宋代史学家司马光在<资治通鉴>中有一段著名的“德才论”:“是故才德全尽谓之圣人,才德兼亡谓之愚人,德胜才谓之君子,才胜德谓之小人.凡取人之术,苟不得 ...

  4. js与jquery的动态加载脚本文件

    jquery动态加载 jQuery.getScript(url,[callback]) js动态加载 function loadJs(name) { document.write('<scrip ...

  5. ASP.NET MVC 3升级至MVC 5.1的遭遇:“已添加了具有相同键的项”

    最近将一个项目从ASP.NET MVC 3升级至刚刚发布的ASP.NET MVC 5.1,升级后发现一个ajax请求出现了500错误,日志中记录的详细异常信息如下: System.ArgumentEx ...

  6. 认识loadrunner及相关性能参数

    认识loadrunner及相关性能参数 LoadRunner,是一种预测系统行为和性能的负载测试工具.通过以模拟上千万用户实施并发负载及实时性能监测的方式来确认和查找问题,LoadRunner能够对整 ...

  7. 002 使用Appender扩展logger框架

    这个地方,在看公司的源代码的时候,写的知识点: 现在再看,竟然不是太懂,重新写一份新的文档,外加示例说明. 一:说明 1.log4j 环境的三个主要组件: logger(日志记录器):控制要启用或禁用 ...

  8. 002 Ajax中传输格式为HTML

    一: 1.介绍 返回的数据可以直接插入到需要的地方. 2.优缺点 二:程序大纲 1.结构 三:程序 1.css body { background: #ffb url("logo.png&q ...

  9. poj1703 Find them, Catch them(带权并查集)

    题目链接 http://poj.org/problem?id=1703 题意 有两个帮派:龙帮和蛇帮,两个帮派共有n个人(编号1~n),输入m组数据,每组数据为D [a][b]或A [a][b],D[ ...

  10. Ionic Js十六:滚动条

    ion-scroll ion-scroll 用于创建一个可滚动的容器. <ion-scroll [delegate-handle=""] [direction="& ...