http://www.edn.com/design/analog/4337128/Make-a-DAC-with-a-microcontroller-s-PWM-timer

Many embedded-microcontroller applications require generation of analog signals. An integrated or stand-alone DAC fills the role. However, you can often use PWM signals for generating the required analog signals. You can use PWM signals to create both dc and ac analog signals. This Design Idea shows how to use a PWM timer to simultaneously create a sinusoid, a ramp, and a dc voltage. A PWM signal is a digital signal with fixed frequency but varying duty cycle. If the duty cycle of the PWM signal varies with time and you filter the PWM signal, the output of the filter is an analog signal (Figure 1).

If you build a PWM DAC in this manner, its resolution is equivalent to the resolution of the PWM signal you use to create the DAC. The PWM output signal requires a frequency that is equivalent to the update rate of the DAC, because each change in PWM duty cycle is the equivalent of one DAC sample. The frequency the PWM timer requires depends on the required PWM signal frequency and the desired resolution. The required frequency is FCLOCK=FPWM×2n, where FCLOCK is the required PWM-timer frequency, FPWM is the PWM-signal frequency, and n is the desired DAC resolution in bits.

Figure 2

depicts a circuit that delivers a 250-Hz sine wave, a 125-Hz ramp, and a dc signal. The desired sampling rate is 8 kHz (32 samples for each sine-wave cycle (16× oversampled), and 64 samples for each ramp cycle (32× oversampled)). These figures result in a required PWM-signal frequency of 8 kHz and a required PWM clock frequency of 2.048 MHz. It is usually best for the PWM signal frequency to be much higher than the desired bandwidth of the signals to be produced. Generally, the higher the PWM frequency, the lower the order of filter required and the easier it is to build a suitable filter. This design uses Timer B of the MSP430 in 16-bit mode and in "up" mode, in which the counter counts up to the contents of capture/compare register 0 (CCR0) and then restarts at zero. CCR0 is loaded with 255, thereby giving the counter an effective 8-bit length. You can find this register and others in a DAC demonstration program for the MSP430 microcontroller. Click here to download the program.

CCR1 and output TB1 produce the sine wave. CCR2 and TB2 generate the ramp, and CCR3 and TB3 yield the dc value. For each output, the output mode is the reset/set mode. In this mode, each output resets when the counter reaches the respective CCRx value and sets when the counter reaches the CCR0 value. This scheme provides positive pulses equivalent to the value in CCRx on each respective output. If you use the timer in 8-bit mode, the reset/set output mode is unavailable for the PWM outputs because the reset/set mode requires CCR0. The timer's clock rate is 2.048 MHz. Figure 3

shows the sine and ramp waveforms. The sine wave in this example uses 32 samples per cycle. The sample values are in a table at the beginning of the program. A pointer points to the next value in the sine table, so that, at the end of each PWM cycle, the new value of the sine wave is written to the capture/compare register of the PWM timer.

The ramp in this example does not require a table of data values. Rather, the ramp simply increments the duty cycle for each cycle of the PWM signal until it reaches the maximum and then starts over at the minimum duty cycle. This gradual increase in PWM-signal duty cycle results in a ramp voltage when the signal passes through a filter. You control the dc level by simply setting and not changing the value of the PWM-signal duty cycle. The dc level is directly proportional to the duty cycle of the PWM signal. Figure 2 shows the reconstruction filters used for each signal in this example. The filter for the ac signals is a simple two-pole, stacked-RC filter, which is simple and has no active components. This type of filter necessitates a higher sampling rate than would be required if the filter had a higher order. With the type of filter shown in Figure 2, you should use at least a 16× oversampling rate.

The filter yields its best response when R2>>R1. Also, setting the cutoff frequency too close to the bandwidth edge causes a fair amount of attenuation. To reduce the amount of attenuation in the filter, set the cutoff frequency above the bandwidth edge but much lower than the frequency of the PWM signal. The filter for the dc value serves for charge storage rather than ac-signal filtering. Therefore, it uses a simple, single-pole RC filter. Figure 4

shows the software flow for the DAC. After a reset, the routine stops the watchdog timer, configures the output ports, and sets up the clock system. Next, the software calls a delay to allow the 32,768-Hz crystal to stabilize to calibrate the DCO (digitally controlled oscillator).

Next, the routine calls the calibration routine to set the operating frequency to 2.048 MHz. After the DCO calibration, the program sets up Timer_B, CCR1 and CCR2 for PWM generation and then starts the timer. Finally, the MSP430 goes into low-power mode 0 (LPM0) to conserve power. The CPU wakes up to handle each CCIFG0 interrupt from the PWM timer and then re-enters LPM0. (See references 1, 2, and 3 for more information on the DCO and the MSP430 family.)

Make a DAC with a microcontroller's PWM timer的更多相关文章

  1. 【STM32】PWM DAC基本原理(实验:PWM实现DAC)

    虽然STM32F103ZET6具有内部DAC,但是也仅仅只有两条DAC通道,并且STM32还有其他的很多型号是没有DAC的.通常情况下,采用专用的D/A芯片来实现,但是这样就会带来成本的增加. 不过S ...

  2. Create a DAC from a microcontroller's ADC

    Few microcontrollers include a DAC. Although you can easily find an inexpensive DAC to control from ...

  3. Cortex-A9 PWM Timer

    PWM定时器        4412时钟为我们提供了PWM定时器,在4412中共有5个32位的定时器,这些定时器可发送中断信号给ARM子系统.另外,定时器0.1.2.3包含了脉冲宽度调制(PWM),并 ...

  4. PWM DAC vs. Standalone

    http://analogtalk.com/?p=534 http://analogtalk.com/?p=551 Posted by AnalogAdvocate on April 09, 2010 ...

  5. PWM DAC Low Pass Filtering

    [TI博客大赛][原创]LM3S811之基于PWM的DAC http://bbs.ednchina.com/BLOG_ARTICLE_3005301.HTM http://www.fpga4fun.c ...

  6. how to generate an analog output from a in-built pwm of Atmega 32AVR microcontrloller?

    how to generate an analog output from a in-built pwm of Atmega 32AVR microcontrloller? you need a re ...

  7. M451 PWM对照数据手册分析

    PWM_T Struct Reference Control Register » Pulse Width Modulation Controller(PWM)   typedef struct { ...

  8. 说说M451例程之PWM的寄存器讲解

    M451提供了两路PWM发生器.每路PWM支持6通道PWM输出或输入捕捉.有一个12位的预分频器把时钟源分频后输入给16位的计数器,另外还有一个16位的比较器.PWM计数器支持向上,向下,上下计数方式 ...

  9. 说说M451例程之PWM

    /**************************************************************************//** * @file main.c * @ve ...

随机推荐

  1. Python爬虫学习1: Requests模块的使用

    Requests函数库是学习Python爬虫必备之一, 能够帮助我们方便地爬取. Requests: 让HTTP服务人类. 本文主要参考了其官方文档. Requests具有完备的中英文文档, 能完全满 ...

  2. caffe可视化

    1.画网络图 假    

  3. 如何用python解析mysqldump文件

    一.前言 最近在做离线数据导入HBase项目,涉及将存储在Mysql中的历史数据通过bulkload的方式导入HBase.由于源数据已经不在DB中,而是以文件形式存储在机器磁盘,此文件是mysqldu ...

  4. Fedora下Eclipse/MyEclipse崩溃的解决方案

    Fedora19下使用myeclipse2013时,打开不到一分钟就异常关闭. 默认在home目录下生成一个log文件,里面显示的错误信息,说是libsoup.so文件导致出错.第一个想法是删除这个文 ...

  5. 《精通Python设计模式》学习行为型之责任链模式

    感觉是全新的学习了. 因为在以前的工作中,并没有有意识的去运用哪一种编程模式. 以后要注意的了. 这才是高手之路呀~ class Event: def __init__(self, name): se ...

  6. python 判断字符编码

    一般情况下,需要加这个: import sys reload(sys) sys.setdefaultencoding('utf-8') 打开其他文件编码用codecs.open 读 下面的代码读取了文 ...

  7. 黑马程序员_java基础笔记(05)...String类

    —————————— ASP.Net+Android+IOS开发..Net培训.期待与您交流!—————————— java.lang包 基本信息中 String就是C++.java等编程语言中的字符 ...

  8. vim选中多行复制粘贴

    1.按v进入可视模式,移动光标选中需要复制的行: 2.使用y复制选中块到缓冲区(剪切选中块使用d): 3.将光标移动到粘贴的位置,按p即可. 复制多行并粘贴到指定位置后,可能需要进行多行缩进.多行缩进 ...

  9. 远程连接mysql root账号报错:2003-can't connect to MYSQL serve

    1.远程连接Linux系统,登录数据库:mysql -uroot -p(密码) 2.修改root账号的设置: GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDE ...

  10. [CodeForces 893D] Credit Card 贪心

    题意: Recenlty Luba有一张信用卡,一开始金额为0,每天早上可以充值任意数量的钱,但有限制,卡里的钱不能超过D.到了晚上,银行会对信用卡进行一次操作,操作有三种: 1.a[i]>0, ...