数学图形之SineSurface与粽子曲面
SineSurface直译为正弦曲面.这有可能和你想象的正弦曲线不一样.如果把正弦曲线绕Y轴旋转,得到的该是正弦波曲面.这个曲面与上一节中的罗马曲面有些相似,那个是被捏过的正四面体,这个则是个被捏过正方体.
本文将展示SineSurface与粽子曲面的生成算法和切图,使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该软件免费开源.QQ交流群: 367752815
这是从http://mathworld.wolfram.com/SineSurface.html上找到的一种曲面.
其曲面的参数方程如下:
![]() |
![]() |
![]() |
(1)
|
![]() |
![]() |
![]() |
(2)
|
![]() |
![]() |
![]() |
(3)
|
It is a sextic surface with algebraic equation (sextic是"六次的"意思, 一开始我还以为是"性感的"意思)
![]() |
从它的参数方程公式来看,就知道它为什么叫正弦曲面了.
脚本代码:
#http://mathworld.wolfram.com/SineSurface.html vertices = D1: D2: u = from to (PI*) D1
v = from to (PI*) D2 x = sin(u)
y = sin(v)
z = sin(u + v) a = x = x*a
y = y*a
z = z*a

如果将脚本中的正弦函数改为余弦函数,那么会得到粽子曲面.
粽子曲面这个名子是我取的,因为它就像个粽子.
vertices = D1: D2: u = from to (PI*) D1
v = from to (PI*) D2 x = cos(u)
y = cos(v)
z = cos(u + v) a = x = x*a
y = y*a
z = z*a

数学图形之SineSurface与粽子曲面的更多相关文章
- 数学图形之贝塞尔(Bézier)曲面
前面章节中讲了贝塞尔(Bézier)曲线,而贝塞尔曲面是对其多一个维度的扩展.其公式依然是曲线的公式: . 而之所以由曲线变成曲面,是将顶点横向连了再纵向连. 很多计算机图形学的教程都会有贝塞尔曲面的 ...
- 数学图形之罗马曲面(RomanSurface)
罗马曲面,像是一个被捏扁的正四面体. 本文将展示罗马曲面的生成算法和切图,使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该软件免费开源.QQ交流群: 367752815 维 ...
- 数学图形之将曲线(curve)转化成曲面管
在我关于数学图形的博客中,一开始讲曲线的生成算法.然后在最近的章节中介绍了圆环,还介绍了螺旋管以及海螺的生成算法.一类是曲线,一类是环面,为什么不将曲线变成环的图形,毕竟曲线看上去太单薄了,这一节我将 ...
- WHY数学图形可视化工具(开源)
WHY数学图形可视化工具 软件下载地址:http://files.cnblogs.com/WhyEngine/WhyMathGraph.zip 源码下载地址: http://pan.baidu.com ...
- 数学图形之Breather surface
这是一种挺漂亮的曲面图形,可惜没有找到太多的相关解释. In differential equations, a breather surface is a mathematical surface ...
- 数学图形之Kuen Surface
Kuen Surface应该又是一个以数学家名字命名的曲面.本文将展示几种Kuen Surface的生成算法和切图,其中有的是标准的,有的只是相似.使用自己定义语法的脚本代码生成数学图形.相关软件参见 ...
- 数学图形之Boy surface
这是一个姓Boy的人发现的,所以取名为Boy surface.该图形与罗马图形有点相似,都是三分的图形.它甚至可以说是由罗马曲面变化而成的. 本文将展示几种Boy曲面的生成算法和切图,使用自己定义语法 ...
- 数学图形之克莱因瓶(klein bottle)
克莱因瓶是一种内外两面在同一个曲面上的图形. 在数学领域中,克莱因瓶(德语:Kleinsche Flasche)是指一种无定向性的平面,比如二维平面,就没有“内部”和“外部”之分.克莱因瓶最初的概念提 ...
- 数学图形之莫比乌斯带(mobius)
莫比乌斯带,又被译作:莫比斯环,梅比斯環或麦比乌斯带.是一种拓扑学结构,它只有一个面(表面),和一个边界.即它的正反两面在同一个曲面上,左右两个边在同一条曲线上.看它的名字很洋气,听它的特征很玄乎,实 ...
随机推荐
- Filter的应用--权限过滤
因为项目比较长,需要一步步进行实现,所以分解成一个一个需求. 一:需求一 1.需求一 可以看某人的权限,同时,可以对这个用户进行权限的修改. 2.程序实现 3.程序目录 4.User.java pac ...
- 牛客网 桂林电子科技大学第三届ACM程序设计竞赛 C.二元-K个二元组最小值和最大-优先队列+贪心(思维)
链接:https://ac.nowcoder.com/acm/contest/558/C来源:牛客网 小猫在研究二元组. 小猫在研究最大值. 给定N个二元组(a1,b1),(a2,b2),…,(aN, ...
- NetworkX 使用(二)
官方教程 博客:NetworkX %pylab inline import networkx as nx Populating the interactive namespace from numpy ...
- OpenGL笔记<第一章> 构建 GLSL class
恭喜,我们终于很扎实地完成了第一章——glsl 入门 不幸的是,it's not the basic of GLSL shader ,我们下一节开篇,basic of GLSL shader 在下一章 ...
- FGPA 中的计数器Verilog语言(时钟分频器)
在quartusII8.0中为ALTERAFPGA设置一个分频器(计数器) 输入时钟48Mhz 输出时钟9600HZ /* 实验名称: 计数器 ** 程序功能: 将48Mhz的时钟分频为9600Hz ...
- type与instance区别
class Foo(object): pass class Bar(Foo): pass obj = Bar() # isinstance用于判断,对象是否是指定类或其派生类的实例 print(isi ...
- 排序算法之冒泡排序Java实现
排序算法之冒泡排序 舞蹈演示排序: 冒泡排序: http://t.cn/hrf58M 希尔排序:http://t.cn/hrosvb 选择排序:http://t.cn/hros6e 插入排序:ht ...
- luogu NOIp热身赛(2018-11-07)题解
为什么前面的人都跑得那么快啊? QAQ T1:区间方差 题目大意:询问区间方差,支持单点修改 首先把方差的式子展开,得到 $$d = \frac{a_1 + ... a_n}{n} - \frac{a ...
- LOJ P3959 宝藏 状压dp noip
https://www.luogu.org/problemnew/show/P3959 考场上我怎么想不出来这么写的,状压白学了. 直接按层次存因为如果某个点在前面存过了则肯定结果更优所以不用在意各点 ...
- [PE484]Arithmetic Derivative
题意:对整数定义求导因子$'$:$p'=1,(ab)'=a'b+ab'$,求$\sum\limits_{i=2}^n(i,i')$ 这个求导定义得比较妙:$(p^e)'=ep^{e-1}$ 推一下就可 ...









