Description

给定一棵有n个节点的无根树和m个操作,操作有2类:
1、将节点a到节点b路径上所有点都染成颜色c;
2、询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),
如“112221”由3段组成:“11”、“222”和“1”。
请你写一个程序依次完成这m个操作。

Input

第一行包含2个整数n和m,分别表示节点数和操作数;
第二行包含n个正整数表示n个节点的初始颜色
下面 行每行包含两个整数x和y,表示x和y之间有一条无向边。
下面 行每行描述一个操作:
“C a b c”表示这是一个染色操作,把节点a到节点b路径上所有点(包括a和b)都染成颜色c;
“Q a b”表示这是一个询问操作,询问节点a到节点b(包括a和b)路径上的颜色段数量。

Output

对于每个询问操作,输出一行答案。

Sample Input

6 5
2 2 1 2 1 1
1 2
1 3
2 4
2 5
2 6
Q 3 5
C 2 1 1
Q 3 5
C 5 1 2
Q 3 5

Sample Output

3
1
2

HINT

数N<=10^5,操作数M<=10^5,所有的颜色C为整数且在[0, 10^9]之间。

第一眼看上去肯定是树链剖分,然后就是想怎么用线段树维护区间色段。

我们用线段树维护一个区间最左边的颜色,最右边的颜色,和颜色段数。如果一个节点的左儿子的右颜色和右儿子的左颜色相同,那么它的色段数是左+右-1,否则是左+右。

但是在查询时一定要注意,跑完每一条重链,和下一条重链中的轻链时,他们在线段树上并不是一起查询的。我们需要单点找出当前重链的顶端和下一个重链的底端的颜色,如果颜色相同,那么ans-1.

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#define in(a) a=read()
#define REP(i,k,n) for(int i=k;i<=n;i++)
#define MAXN 100010
using namespace std;
inline int read(){
int x=,f=;
char ch=getchar();
for(;!isdigit(ch);ch=getchar())
if(ch=='-')
f=-;
for(;isdigit(ch);ch=getchar())
x=x*+ch-'';
return x*f;
}
int n,m,a,b,d;
char c;
int input[MAXN];
int total,head[MAXN],nxt[MAXN<<],to[MAXN<<];
int depth[MAXN],size[MAXN],son[MAXN],f[MAXN];
int cnt,dfn[MAXN],top[MAXN],link[MAXN];
struct node{
int l,r,lc,rc,s,lt;
}tree[MAXN<<];
inline void adl(int a,int b){
total++;
to[total]=b;
nxt[total]=head[a];
head[a]=total;
return ;
}
inline void getson(int u,int fa){//得到重儿子
size[u]=;
for(int e=head[u];e;e=nxt[e])
if(to[e]!=fa){
depth[to[e]]=depth[u]+;
f[to[e]]=u;
getson(to[e],u);
size[u]+=size[to[e]];
if(!son[u] || size[to[e]]>size[son[u]]) son[u]=to[e];
}
return ;
}
inline void getdfn(int u,int t){//得到重边
top[u]=t;
dfn[u]=++cnt;
link[cnt]=u;
if(!son[u]) return ;
getdfn(son[u],t);
for(int e=head[u];e;e=nxt[e])
if(to[e]!=f[u] && to[e]!=son[u])
getdfn(to[e],to[e]);
return ;
}
inline void build(int i,int l,int r){//建树
tree[i].l=l;
tree[i].r=r;
if(l==r){
tree[i].s=,tree[i].lc=tree[i].rc=input[link[l]];
return ;
}
int mid=(l+r)>>;
build(i<<,l,mid);
build(i<<|,mid+,r);
if(tree[i<<].rc==tree[i<<|].lc) tree[i].s=tree[i<<].s+tree[i<<|].s-;
else tree[i].s=tree[i<<].s+tree[i<<|].s;
tree[i].lc=tree[i<<].lc;
tree[i].rc=tree[i<<|].rc;
}
inline void pushdown(int i){//下传懒标记
if(!tree[i].lt) return ;
int k=tree[i].lt;
tree[i<<].s=tree[i<<|].s=;
tree[i<<].lc=tree[i<<].rc=tree[i<<|].lc=tree[i<<|].rc=k;
tree[i<<].lt=tree[i<<|].lt=k;
tree[i].lt=;
return ;
}
inline void add(int i,int l,int r,int k){//修改颜色
if(tree[i].l>=l && tree[i].r<=r){
tree[i].s=;
tree[i].lt=tree[i].lc=tree[i].rc=k;
return ;
}
pushdown(i);
if(tree[i<<].r>=l) add(i<<,l,r,k);
if(tree[i<<|].l<=r) add(i<<|,l,r,k);
if(tree[i<<].rc==tree[i<<|].lc) tree[i].s=tree[i<<].s+tree[i<<|].s-;
else tree[i].s=tree[i<<].s+tree[i<<|].s;
tree[i].lc=tree[i<<].lc;
tree[i].rc=tree[i<<|].rc;
return ;
}
inline void updates(int x,int y,int z){//枚举两点间每一条重边
int tx=top[x],ty=top[y];
while(tx!=ty){
if(depth[tx]<depth[ty]) swap(tx,ty),swap(x,y);
add(,dfn[tx],dfn[x],z);
x=f[tx];
tx=top[x],ty=top[y];
}
if(depth[x]<depth[y]) swap(x,y);
add(,dfn[y],dfn[x],z);
}
inline int query(int i,int l,int r){//区间查询
int sum=;
if(tree[i].l>=l && tree[i].r<=r) return tree[i].s;
pushdown(i);
if(tree[i<<].r>=l) sum+=query(i<<,l,r);
if(tree[i<<|].l<=r) sum+=query(i<<|,l,r);
if(tree[i<<].r>=l && tree[i<<|].l<=r && tree[i<<].rc==tree[i<<|].lc) sum--;
return sum;
}
inline int getcolor(int i,int dis){//查询单点颜色
if(tree[i].l==tree[i].r) return tree[i].lc;
pushdown(i);
int mid=(tree[i].l+tree[i].r)>>;
if(dis<=mid) return getcolor(i<<,dis);
else return getcolor(i<<|,dis);
}
inline int getsum(int x,int y){//枚举查询时两点间的重边
int tx=top[x],ty=top[y],ans=;
while(tx!=ty){
if(depth[tx]<depth[ty]) swap(tx,ty),swap(x,y);
ans+=query(,dfn[tx],dfn[x]);
if(getcolor(,dfn[tx])==getcolor(,dfn[f[tx]])) ans--;//看轻边两点的颜色是否相同
x=f[tx];
tx=top[x],ty=top[y];
}
if(depth[x]<depth[y]) swap(x,y);
ans+=query(,dfn[y],dfn[x]);
return ans;
}
int main(){
in(n),in(m);
REP(i,,n) in(input[i]);
REP(i,,n-) in(a),in(b),adl(a,b),adl(b,a);
depth[]=;
getson(,);
getdfn(,);
build(,,n);
REP(i,,m){
cin>>c;
if(c=='C') in(a),in(b),in(d),updates(a,b,d);
if(c=='Q') in(a),in(b),printf("%d\n",getsum(a,b));
}
}

bzoj2243 染色的更多相关文章

  1. 刷题总结——bzoj2243染色

    题目: 题目背景 SDOI2011 DAY1 T3 题目描述 给定一棵有 n 个节点的无根树和 m 个操作,操作有 2 类:1.将节点 a 到节点 b 路径上所有点都染成颜色 c :2.询问节点 a  ...

  2. HDU5892~HDU5901 2016网络赛沈阳

    A.题意: 有一个n×n的格子, 有50种怪物. 有m个操作, 每次操作会往一个矩形区域放怪物, 每个格子放相同数目的怪物, 或者查询当前50种怪物的奇偶性. 分析:用2^50表示怪物的奇偶,然后就是 ...

  3. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  4. BZOJ2243 洛谷2486 [SDOI2011]染色 树链剖分

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2243 题目传送门 - 洛谷2486 题意概括 一棵树,共n个节点. 让你支持以下两种操作,共m次操 ...

  5. BZOJ2243 SDOI2011 染色 【树链剖分】

    BZOJ2243 SDOI2011 染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色 ...

  6. 【BZOJ2243】染色(树链剖分)

    题意: 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“112221”由 ...

  7. bzoj2243树链剖分+染色段数

    终于做了一道不是一眼出思路的代码题(⊙o⊙) 之前没有接触过这种关于染色段数的题目(其实上课好像讲过),于是百度了一下(现在思维能力好弱) 实际上每一段有用的信息就是总共有几段和两段各是什么颜色,在开 ...

  8. bzoj-2243 2243: [SDOI2011]染色(树链剖分)

    题目链接: 2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6267  Solved: 2291 Descript ...

  9. [bzoj2243][SDOI2011]染色

    Description 给定一棵有$n$个节点的无根树和$m$个操作,操作有$2$类: 1.将节点$a$到节点$b$路径上所有点都染成颜色$c$; 2.询问节点$a$到节点$b$路径上的颜色段数量(连 ...

随机推荐

  1. Linux的bg和fg命令 ---让程序在前台后台之间切换

    Linux的bg和fg命令 我们都知道,在 Windows 上面,我们要么让一个程序作为服务在后台一直运行,要么停止这个服务.而不能让程序在前台后台之间切换.而 Linux 提供了 fg 和 bg 命 ...

  2. 深度解析:python之浅拷贝与深拷贝

    深度解析python之浅拷贝与深拷贝 本文包括知识点: 1.copy与deepcopy 2.可变类型与不可变类型 1.copy与deepcopy 在日常python编码过程中,经常会遇见变量的赋值.这 ...

  3. http请求与传参

    这并不算是文章,暂时只做粗略地记录,以免忘记,因此会显得杂乱无章,随便抓了几个包和对postman截图,日后有空再完善 1.get方式 只有一种方式,那就是在url后面跟参数 2.post方式 1)表 ...

  4. MongoDB(3.6.3)的用户认证初识

    Windows 10家庭中文版,MongoDB 3.6.3, 前言 刚刚安装好了MongoDB,启动了服务器-mongod命令,启动了MongoDB shell-mongo命令,不过,全程都没有使用u ...

  5. Jmeter运行结果unicode编码乱码问题

    一.web页面乱码 比如访问百度返回页面显示乱码,如下会有问号 如果想让他显示中文可以按以下操作: 1.打开jmter配置文件 bin/jmeter.properties 2.修改配置文件,查找“sa ...

  6. 汇编看C函数调用

    http://blog.csdn.net/wishfly/article/details/5022008   简单的函数调用,通过简单的函数调用反汇编可以清楚了解如下 1.栈到底是什么,如何操纵栈的? ...

  7. 在VirtualBox虚拟机中安装Centos操作系统怎么与本地XShell远程连接

    问题: 在VirtualBox安装好了CentOS操作系统后,我们怎么才可以用XSell连接虚拟机中的CentOS呢? 答案: (1)在windows下用cmd--ipconfig查看VirtualB ...

  8. 最简单删除SQL Server中所有数据的方法(不用考虑表之间的约束条件,即主表与子表的关系)

    其实删除数据库中数据的方法并不复杂,为什么我还要多此一举呢,一是我这里介绍的是删除数据库的所有数据,因为数据之间可能形成相互约束关系,删除操作可能陷入死循环,二是这里使用了微软未正式公开的sp_MSF ...

  9. 最邻近规则分类KNN算法

    例子: 求未知电影属于什么类型: 算法介绍: 步骤:  为了判断未知实例的类别,以所有已知类别的实例作为参照      选择参数K      计算未知实例与所有已知实例的距离      选择最近K个已 ...

  10. Activity总结练习

    package com.example.wang.myapplication; import android.content.Intent; import android.os.Bundle; imp ...