Fibonacci again and again(http://acm.hdu.edu.cn/showproblem.php?pid=1848)

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 12753    Accepted Submission(s): 5563

Problem Description
任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、  这是一个二人游戏;
2、  一共有3堆石子,数量分别是m, n, p个;
3、  两人轮流走;
4、  每走一步可以选择任意一堆石子,然后取走f个;
5、  f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、  最先取光所有石子的人为胜者;

假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。

 
Input
输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。
m=n=p=0则表示输入结束。
 
Output
如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。
 
Sample Input
1 1 1
1 4 1
0 0 0
 
Sample Output
Fibo
Nacci
 
#include <iostream>
#include<string.h>
#include<cstdio>
using namespace std;
const int MAXN = ;
int f[MAXN];
int s[MAXN];
int sg[MAXN];
void getSG(int n)
{
int i,j;
for(i=;i<=n;i++)
{
memset(s,,sizeof(s));
for(j=;f[j]<=i&&j<=;j++)
s[sg[i-f[j]]]=;
for(j=;;j++)
{
if(!s[j])
{
sg[i]=j;
break;
}
}
}
}
int main()
{
f[]=,f[]=;
for(int i=;i<=;i++)
f[i]=f[i-]+f[i-];
getSG();
int m,n,p;
while(scanf("%d%d%d",&m,&n,&p),m||n||p)
{
if(sg[m]^sg[n]^sg[p])
cout << "Fibo" << endl;
else
cout << "Nacci" << endl;
}
return ;
}
 

博弈论之SG函数的更多相关文章

  1. 博弈论(SG函数):HNOI 2007 分裂游戏

    Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子 ...

  2. CF 256C Furlo and Rublo and Game【博弈论,SG函数】

    暴力的求SG函数会超时,正解是先处理出10^6以内的SG值,对于更大的,开根号之后计算出. 小数据观察可以发现sg函数值成段出现,而且增长速度很快,因此可以计算出来每一段的范围,只需打表即可. Nim ...

  3. 博弈论与SG函数

    巴什博奕: 两个顶尖聪明的人在玩游戏,有n个石子,每人可以随便拿1−m个石子,不能拿的人为败者,问谁会胜利 结论: 设当前的石子数为\(n=k∗(m+1)\)即\(n%(m+1)==0\)时先手一定失 ...

  4. 0x3A 博弈论之SG函数

    博弈即玄学啊 (除了nim和二分图博弈什么都不会 算是学了下SG函数吧 这个东西是针对有向图游戏的,相当于把一个局面看作一个点,到达下个局面相当于建一条边 必胜态SG值为0 那么对于一个点,他的SG值 ...

  5. ABC206 F - Interval Game 2 (区间DP,博弈论,SG函数)

    题面 题意很简单 A l i c e \tt Alice Alice 和 B o b \tt Bob Bob 在博弈.摆在他们面前有 N \rm N N 个区间 [ l i , r i ) \rm[l ...

  6. 博弈论进阶之SG函数

    SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...

  7. [您有新的未分配科技点]博弈论入门:被博弈论支配的恐惧(Nim游戏,SG函数)

    今天初步学习了一下博弈论……感觉真的是好精妙啊……希望这篇博客可以帮助到和我一样刚学习博弈论的同学们. 博弈论,又被称为对策论,被用于考虑游戏中个体的预测行为和实际行为,并研究他们的应用策略.(其实这 ...

  8. Nim游戏与SG函数 ——博弈论小结

    写这篇博客之前,花了许久时间来搞这个SG函数,倒是各路大神的论文看的多,却到底没几个看懂的.还好网上一些大牛博客还是性价比相当高的,多少理解了些,也自己通过做一些题加深了下了解. 既然是博弈,经典的N ...

  9. 博弈论基础之sg函数与nim

    在算法竞赛中,博弈论题目往往是以icg.通俗的说就是两人交替操作,每步都各自合法,合法性与选手无关,只与游戏有关.往往我们需要求解在某一个游戏或几个游戏中的某个状态下,先手或后手谁会胜利的问题.就比如 ...

随机推荐

  1. 根据自定义区域裁剪ArcGIS切片地图服务

    切片地图服务是访问地图最快捷的服务方式.假如要根据地理区域对切图进行访问控制,往往只能针对不同地理区域制作相应的地图,并发布为切片地图服务.而一般在切图的时候又是按全区域实施的,所以给切片管理者造成不 ...

  2. c# axPageLayoutControl 加数据框

    private void axPageLayoutControl1_OnMouseDown(object sender, ESRI.ArcGIS.Controls.IPageLayoutControl ...

  3. FineReport中树数据集如何实现组织树报表

    组织树报表中由id与父id来实现组织树报表,若层级数较多时,对每个单元格设置过滤条件和形态会比较繁琐,因此FineReport提供了一种特殊的数据集——树数据集,只需要简单的设置就能自动递归出层级,方 ...

  4. Vue 框架-06-条件语句 v-if 实现选项卡效果

    Vue 框架-06-条件语句 v-if 实现选项卡效果 本片介绍的是 Vue 中条件语句 v-if 第一个小实例是,通过 v-if="布尔值",通过布尔值的真假来决定,某元素是否显 ...

  5. oracle 用户创建、修改、删除

    创建用户: create user test identified by test; 修改密码: 1.alter user test identified by mima; 2.passw[ord]  ...

  6. Pig limit用法举例

    lmt = limit data 10;   只获取指定条数的数据,不能保证每次得到的结果一致,先执行order再limit可以保证一致.   输入数据全部载入.   会触发reduce阶段   a ...

  7. zTree实现权限列表简单实例

    zTree的简单实例 zTree 是一个依靠jQuery 实现的多功能 "树插件".优异的性能.灵活的配置.多种功能的组合是 zTree 最大优点. zTree官网 zTreeAP ...

  8. MyEclipse中修改servlet模板

    1.在MyEclipse目录下搜索com.genuitec.eclipse.wizards,得到搜索结果 com.genuitec.eclipse.wizards_8.4.100.me20091213 ...

  9. 剑指offer 11二进制中1的个数

    输入一个整数,输出该数二进制表示中1的个数.其中负数用补码表示. java版本: public class Solution { public int NumberOf1(int n) { Strin ...

  10. Altium制作DC002的PCB封装和3D模型

    Altium制作DC002的PCB封装和3D模型 常用的电源连接器(Dc Power Jack Connector)DC002.DC005等等型号的3D模型在网上很难找到合适的,我们可以选择CUI 公 ...