Description

你需要构造一个长度为 \(n\) 的排列 , 使得一个数作为前缀最大值的次数为 \(A\) , 作为后缀最大值的次数为 \(B\) , 求满足要求的排列个数 .

题面

Solution

同 \(FJOI\) 建筑师 .

从 \(n\) 到 \(1\) 依次加入 , 对于 \(n\) ,对 \(A,B\) 的出现次数都会贡献 \(1\) .

剩下的数 , 如果放在左边则对 \(A\) 有贡献 , 放在右边则对 \(B\) 有贡献 , 放在中间则没有贡献 .

我们从组合意义上分析 , 那么相当于是操作 \(n-1\) 轮 , 每轮可以选择 从 \((0,0)\) 向走 \((A-1,B-1)\) 一步或者停顿的方案数 .

从 \((0,0)\) 走向 \((A-1,B-1)\) 的不同方案数为 \(C(A+B-2,A-1)\)

并且还要求出分配停顿的位置(确定每个位置停了几次)的不同方案数 .

这个可以 \(DP\) 设前 \(i\) 次操作 , 走了 \(j\) 步的方案数, \(f[i][j]=f[i-1][j-1]+f[i-1][j]*(i-1)\) , 这个东西就等于第一类斯特林数 .

由于\(S(n,m)\)等于 \(P(x,n)\) 的第 \(x^m\) 项系数 , 就可以对应一个上升幂的 \(x^m\) 项系数.

可以分治+\(NTT\) 合并出一个长度为 \(n\) 的多项式 , 就可以求出第一类斯特林数的某一行了 .

#include<bits/stdc++.h>
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
const int N=4e5+10,mod=998244353;
inline int qm(int x,int k){
int sum=1;
for(;k;k>>=1,x=1ll*x*x%mod)if(k&1)sum=1ll*sum*x%mod;
return sum;
}
int n,a[20][N],R[N],L=0;
inline int C(int n,int m){
if(n<m || n<0 || m<0)return 0;
int ret=1,I=1;
for(int i=1;i<=m;i++)ret=1ll*ret*(n-i+1)%mod,I=1ll*I*i%mod;
return 1ll*ret*qm(I,mod-2)%mod;
}
inline void NTT(int *A){
for(int i=0;i<n;i++)if(i<R[i])swap(A[i],A[R[i]]);
for(int i=1;i<n;i<<=1){
int t0=qm(3,(mod-1)/(i<<1)),x,y;
for(int j=0;j<n;j+=i<<1){
int t=1;
for(int k=0;k<i;k++,t=1ll*t*t0%mod){
x=A[j+k];y=1ll*A[j+k+i]*t%mod;
A[j+k]=(x+y)%mod;A[j+k+i]=(x-y+mod)%mod;
}
}
}
}
inline void mul(int *A,int *B){
NTT(A);NTT(B);
for(int i=0;i<n;i++)A[i]=1ll*A[i]*B[i]%mod;
NTT(A);reverse(A+1,A+n);
for(int i=0,t=qm(n,mod-2);i<n;i++)A[i]=1ll*A[i]*t%mod;
}
inline void solve(int l,int r,int d){
if(l==r){a[d][0]=l;a[d][1]=1;return ;}
int mid=(l+r)>>1,m=r-l+1;
solve(l,mid,d+1);
for(int i=0;i<=m;i++)a[d][i]=a[d+1][i];
solve(mid+1,r,d+1);
for(n=1,L=0;n<=m;n<<=1)L++;
for(int i=mid-l+2;i<n;i++)a[d][i]=0;
for(int i=r-mid+1;i<n;i++)a[d+1][i]=0;
for(int i=0;i<n;i++)R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
mul(a[d],a[d+1]);
}
int A,B;
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n>>A>>B;
if(n==1){
if(A+B-2>=0)puts("1");else puts("0");
exit(0);
}
solve(0,n-2,0);
cout<<1ll*a[0][A+B-2]*C(A+B-2,A-1)%mod;
return 0;
}

Codeforces 960G. Bandit Blues的更多相关文章

  1. Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues

    考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...

  2. 【CF960G】Bandit Blues(第一类斯特林数,FFT)

    [CF960G]Bandit Blues(第一类斯特林数,FFT) 题面 洛谷 CF 求前缀最大值有\(a\)个,后缀最大值有\(b\)个的长度为\(n\)的排列个数. 题解 完完全全就是[FJOI] ...

  3. 【CF960G】Bandit Blues

    [CF960G]Bandit Blues 题面 洛谷 题解 思路和这道题一模一样,这里仅仅阐述优化的方法. 看看答案是什么: \[ Ans=C(a+b-2,a-1)\centerdot s(n-1,a ...

  4. Divide by Zero 2018 and Codeforces Round #474 (Div. 1 + Div. 2, combined)G - Bandit Blues

    题意:求满足条件的排列,1:从左往右会遇到a个比当前数大的数,(每次遇到更大的数会更换当前数)2.从右往左会遇到b个比当前数大的数. 题解:1-n的排列,n肯定是从左往右和从右往左的最后一个数. 考虑 ...

  5. CF960G Bandit Blues 第一类斯特林数+分治+FFT

    题目传送门 https://codeforces.com/contest/960/problem/G 题解 首先整个排列的最大值一定是 \(A\) 个前缀最大值的最后一个,也是 \(B\) 个后缀最大 ...

  6. codeforces960G. Bandit Blues

    题目链接:codeforces960G 来看看三倍经验:hdu4372 luogu4609 某蒟蒻的关于第一类斯特林数的一点理解QAQ:https://www.cnblogs.com/zhou2003 ...

  7. [CF960G] Bandit Blues

    题意 给你三个正整数 \(n,a,b\),定义 \(A\) 为一个排列中是前缀最大值的数的个数,定义 \(B\) 为一个排列中是后缀最大值的数的个数,求长度为 \(n\) 的排列中满足 \(A = a ...

  8. CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增

    传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...

  9. Codeforces960G Bandit Blues 【斯特林数】【FFT】

    题目大意: 求满足比之前的任何数小的有A个,比之后的任何数小的有B个的长度为n的排列个数. 题目分析: 首先写出递推式,设s(n,k)表示长度为n的排列,比之前的数小的数有k个. 我们假设新加入的数为 ...

随机推荐

  1. CentOS 7 安装并配置 MySQL 5.6

    Linux使用MySQL Yum存储库上安装MySQL 5.6,适用于Oracle Linux,Red Hat Enterprise Linux和CentOS系统. 1.添加MySQL Yum存储库 ...

  2. .Net Core 自定义配置源从配置中心读取配置

    配置,几乎所有的应用程序都离不开它..Net Framework时代我们使用App.config.Web.config,到了.Net Core的时代我们使用appsettings.json,这些我们再 ...

  3. C# 一些代码小结--串口操作

    串口解析显示中文 private String SerialPortReadStr() { try { String str = null; int n = serialPort1.BytesToRe ...

  4. 网易云安全DDoS高防全新上线 ,游戏防护实力领先

    本文由  网易云发布.       10月24日,网易云安全(易盾)正式上线DDoS高防解决方案[点击查看].基于网易20年网络安全防护经验,网易云安全(易盾)DDoS高防可提供1T超大防护带宽,拥有 ...

  5. xiaocong/uiautomator

    uiautomator      This module is a Python wrapper of Android uiautomator testing framework. It works ...

  6. about BFC

    https://www.cnblogs.com/lhb25/p/inside-block-formatting-ontext.html Box.Formatting Context(BFC)

  7. 一分钟搞懂 JavaScript this 指向问题

    关于Javascript的this指向问题,网络上有很多分析文章,写的很好,比如这里和这里 我这里做一个简单的总结. 箭头函数的 this 箭头函数内的this指向外层函数定义时所在的作用域.如果没有 ...

  8. node 无脑生成小程序二维码图

    RT 新建createwxaqrcode.js: const request = require('request') const fs = require('fs') // eg:生成购物车列表圆形 ...

  9. java验证身份证合理性

    package com.tiantian.util; import java.util.Calendar;import java.util.HashMap;import java.util.Map;i ...

  10. 实现可搜索仿select下拉选中

    由于在优化项目中,发现先前写的一个活化石级的的可搜索下拉功能在高速搜索中会出现卡顿现象 1.起初的解决方法是在搜索事件中加入防抖函数隔一段时间才去触发他,同时搜索的不再是html文档片段,而是直接对数 ...