CF1039D You Are Given a Tree 根号分治,贪心
CF1039D You Are Given a Tree
根号分治好题。
这题可以整体二分,但我太菜了,不会。
根号分治怎么考虑呢?先想想\(n^2\)暴力吧。对于每一个要求的\(k\),一遍dfs直接贪心,能拼成链就直接拼,正确性不用我证明吧。
考虑对于\(k \le \sqrt n\),直接按照暴力去做,复杂度\(O(n \sqrt n)\);对于\(k\)从\(\sqrt n+1\)到\(n\)的所有情况,我们发现答案只会在\(\sqrt n\)到\(0\)之间取值(\(k> \sqrt n\)),且是单调不升的,考虑用一个左往右移的指针来维护求解的过程,可以每次求出一段的值,具体来说是这样:先把指针\(i\)指向\(\sqrt n+1\),然后对于每一个\(i\),求出\(i\)的答案\(t\),二分一个与它答案相同的最右边的点,并把这一段的答案更新为\(t\),这样最多二分\(\sqrt n\)次(最多只有\(\sqrt n\)种答案),每次二分(算上check)的复杂度是\(O(n logn)\),所以这部分的复杂度就是\(O(n \sqrt n log n)\),总的复杂度也就是\(O(n \sqrt n log n)\)。
上面把分治的节点默认为\(\sqrt n\)只是为了理解起来直观,事实上复杂度还可以更优。我们发现两块的复杂度还不是很平衡,设分治的节点是\(T\),那么第一块的复杂度就是\(Tn\),第二块就是\(\frac{n^2 log n}{T}\)。要使复杂度最低,就应该取\(T=\sqrt{n log n}\)。这样的程序运行效率(理论结果)大概是取\(T\)为\(\sqrt n\)的两倍。
#include<cstdio>
#include<cctype>
#include<cmath>
#define R register
#define I inline
using namespace std;
const int S=100003,N=200003;
char buf[1000000],*p1,*p2;
I char gc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,S,stdin),p1==p2)?EOF:*p1++;}
I int rd(){
R int f=0; R char c=gc();
while(c<48||c>57) c=gc();
while(c>47&&c<58) f=f*10+(c^48),c=gc();
return f;
}
int h[S],s[N],g[N],p[S],d[S],f[S],o[S],n,c,e;
I int max(int x,int y){return x>y?x:y;}
I void add(int x,int y){s[++c]=h[x],h[x]=c,g[c]=y;}
void dfs(int x,int f){
for(R int i=h[x],y;i;i=s[i])
if((y=g[i])^f)
dfs(y,x);
p[x]=f,d[++e]=x;
}
I int slv(int k){
R int i,x,r=0;
for(i=1;i<=n;++i)
f[i]=1;
for(i=1;i<=n;++i){
x=d[i];
if(p[x]&&(~f[p[x]])&&(~f[x]))
if(f[x]+f[p[x]]>=k)
++r,f[p[x]]=-1;
else
f[p[x]]=max(f[p[x]],f[x]+1);
}
return r;
}
int main(){
R int q,i,j,x,y,t,l,r,m;
n=rd(),q=sqrt(n*log(n)/log(2));
for(i=1;i<n;++i)
x=rd(),y=rd(),add(x,y),add(y,x);
dfs(1,0),o[1]=n;
for(i=2;i<=q;++i)
o[i]=slv(i);
for(i=q+1;i<=n;i=l+1){
l=i,r=n,t=slv(i);
for(;l<r;slv(m)^t?r=m-1:l=m)
m=l+r+1>>1;
for(j=i;j<=l;++j)
o[j]=t;
}
for(i=1;i<=n;++i)
printf("%d\n",o[i]);
return 0;
}
鸣谢:@fwat julao
CF1039D You Are Given a Tree 根号分治,贪心的更多相关文章
- CF1039D You Are Given a Tree 根号分治、二分、贪心
传送门 似乎直接做不太好做-- 当你不会做的时候就可以考虑根号算法了(或许是这样的 考虑如果只有一个询问如何计算答案. 显然是可以贪心的,思路与NOIP2018D1T3是相同的.每一个点向上传一条链, ...
- CF1039D-You Are Given a Tree【根号分治,贪心】
正题 题目链接:https://www.luogu.com.cn/problem/CF1039D 题目大意 给出\(n\)个点的一棵树,然后对于\(k\in[1,n]\)求每次使用一条长度为\(k\) ...
- Codeforces 1039D You Are Given a Tree [根号分治,整体二分,贪心]
洛谷 Codeforces 根号分治真是妙啊. 思路 考虑对于单独的一个\(k\)如何计算答案. 与"赛道修建"非常相似,但那题要求边,这题要求点,所以更加简单. 在每一个点贪心地 ...
- [CF1039D]You Are Given a Tree[贪心+根号分治]
题意 给你\(n\)个点的树,其中一个简单路径的集合被称为\(k\)合法当且仅当树的每个节点最多属于一条路径,且每条路径包含\(k\)个节点.对于每个\(k(k \in [1,n])\),输出最多的\ ...
- CF804D Expected diameter of a tree 树的直径 根号分治
LINK:Expected diameter of a tree 1e5 带根号log 竟然能跑过! 容易想到每次连接两个联通快 快速求出直径 其实是 \(max(D1,D2,f_x+f_y+1)\) ...
- 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 xor (根号分治)
xor There is a tree with nn nodes. For each node, there is an integer value a_iai, (1 \le a_i \le ...
- BZOJ.4320.[ShangHai2006]Homework(根号分治 分块)
BZOJ \(\mathbb{mod}\)一个数\(y\)的最小值,可以考虑枚举剩余系,也就是枚举区间\([0,y),[y,2y),[2y,3y)...\)中的最小值(求后缀最小值也一样)更新答案,复 ...
- [CF1039D]You Are Given a Tree
[CF1039D]You Are Given a Tree 题目大意: 给定一棵\(n(n\le10^5)\)个节点的树.对于每一个正整数\(k(1\le k\le n)\),求最多能找出多少条包含\ ...
- CF1039E Summer Oenothera Exhibition 贪心、根号分治、倍增、ST表
传送门 感谢这一篇博客的指导(Orzwxh) $PS$:默认数组下标为$1$到$N$ 首先很明显的贪心:每一次都选择尽可能长的区间 不妨设$d_i$表示在取当前$K$的情况下,左端点为$i$的所有满足 ...
随机推荐
- [翻译] DDExpandableButton
DDExpandableButton https://github.com/ddebin/DDExpandableButton Purpose - 目的 DDExpandableButton is a ...
- Redis学习---Redis的免密操作
Redis的免密操作 问题解决[方式一]:当前这种linux配置redis密码的方法是一种临时的,如果redis重启之后密码就会失效 1.首先进入redis,如果没有开启redis则需要先开启: [r ...
- windows 10最新版镜像资源下载 Win10 ISO下载教程
最近发现原创写的文章被无良爬走,而且变成了无图尬文,所以开头附上原文地址: http://www.cnblogs.com/xueyudlut/p/7497975.html -------------- ...
- 【C#】#100 调用摄像头
需求:由于项目需要获得用户的头像,所以需要用C#调用摄像头获取头像. 下面写一个调用摄像头的方法 案例:调用摄像头的一个DEMO[效果图] 使用的类库:AForge.dll [Demo下载,Dem ...
- HDFS下载数据机制的底层分析
HDFS下载数据机制的底层分析 Hadoop中的RPC(Remote Procedure Call)框架 hadoop中结点间的通信采用的是RPC. RPC框架的实现机制图解: 从hdfs下载数据的源 ...
- php 上传大文件主要涉及配置upload_max_filesize和post_max_size两个选项。
今天在做上传的时候出现一个非常怪的问题,有时候表单提交可以获取到值,有时候就获取不到了,连普通的字段都获取不到了,苦思冥想还没解决,群里人问我upload_max_filesize的值改了吗,我说改了 ...
- Connection:Keep-alive
名词解释: HTTP无状态:无状态是指协议对于事务处理没有记忆能力,服务器不知道客户端是什么状态.从另一方面讲,打开一个服务器上的网页和你之前打开这个服务器上的网页之间没有任何联系 如果你要实现一个购 ...
- JAVA 泛型通配符 ? EXTENDS SUPER 的用法
1. <? extends Hero> ArrayList heroList<? extends Hero> 表示这是一个Hero泛型或者其子类泛型heroList 的泛型可能 ...
- 10分钟安装OpenStack
1 OpenStack初学者的苦恼 2 OpenStack最低配置要求 3 配置UOS环境 3.1 设置网络 3.1.1 创建路由器 3.1.2 创建网络 3.1.3 创建两个子网 3.2 创建UOS ...
- pm2踩过的坑
pm2实现一键部署,能将github上的代码拉到服务器,但是死活就是起不了服务. pm2部署命令: pm2 deploy ecosystem.json production setup pm2 dep ...