POJ2029——Get Many Persimmon Trees
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 3656 | Accepted: 2378 |
Description
domain of Aizu, had decided to grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field.
Inside the field which had also a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as 'Mishirazu Persimmon', were planted. Since persimmon was Hayashi's favorite fruit, he wanted to have
as many persimmon trees as possible in the estate given by the lord.
For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded
by the solid line contains the most persimmon trees. Similarly, if the estate's width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate's width and height are 3 and 4 respectively, the area surrounded by the dotted
line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1.

Figure 1: Examples of Rectangular Estates
Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.
Input
N
W H
x1 y1
x2 y2
...
xN yN
S T
N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <=
N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees
are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H.
The end of the input is indicated by a line that solely contains a zero.
Output
Sample Input
16
10 8
2 2
2 5
2 7
3 3
3 8
4 2
4 5
4 8
6 4
6 7
7 5
7 8
8 1
8 4
9 6
10 3
4 3
8
6 4
1 2
2 1
2 4
3 4
4 2
5 3
6 1
6 2
3 2
0
Sample Output
4
3
Source
field=source&key=Japan+2003+Domestic">Japan 2003 Domestic
二维树状数组+枚举终点就可以。由于数据范围不大
#include <map>
#include <set>
#include <list>
#include <stack>
#include <vector>
#include <queue>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int c[222][222]; int w, h;
int n; int lowbit(int x)
{
return x & (-x);
} void add(int x, int y)
{
for (int i = x; i <= w; i += lowbit(i))
{
for (int j = y; j <= h; j += lowbit(j))
{
c[i][j]++;
}
}
} int sum(int x, int y)
{
int ans = 0;
for (int i = x; i > 0; i -= lowbit(i))
{
for (int j = y; j > 0; j -= lowbit(j))
{
ans += c[i][j];
}
}
return ans;
} int main()
{
while (~scanf("%d", &n), n)
{
scanf("%d%d", &w, &h);
memset (c, 0, sizeof(c) );
int x, y;
for (int i = 0; i < n; i++)
{
scanf("%d%d", &x, &y);
add(x, y);
}
int s, t;
scanf("%d%d", &s, &t);
int ans = 0;
for (int i = 1; i <= w; i++)
{
for (int j = 1; j <= h; j++)
{
ans = max(ans, sum(i, j) - sum(i, j - t) - sum(i - s, j) + sum(i - s, j - t));
}
}
printf("%d\n", ans);
}
return 0;
}
版权声明:本文博客原创文章,博客,未经同意,不得转载。
POJ2029——Get Many Persimmon Trees的更多相关文章
- poj2029 Get Many Persimmon Trees
http://poj.org/problem?id=2029 单点修改 矩阵查询 二维线段树 #include<cstdio> #include<cstring> #inclu ...
- POJ-2029 Get Many Persimmon Trees(动态规划)
Get Many Persimmon Trees Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3987 Accepted: 2 ...
- POJ2029:Get Many Persimmon Trees(二维树状数组)
Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...
- POJ 2029 Get Many Persimmon Trees
Get Many Persimmon Trees Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3243 Accepted: 2 ...
- (简单) POJ 2029 Get Many Persimmon Trees,暴力。
Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...
- POJ 2029 Get Many Persimmon Trees (二维树状数组)
Get Many Persimmon Trees Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I ...
- xtu数据结构 B. Get Many Persimmon Trees
B. Get Many Persimmon Trees Time Limit: 1000ms Memory Limit: 30000KB 64-bit integer IO format: %lld ...
- POJ-2029 Get Many Persimmon Trees---二维树状数组+枚举
题目链接: https://vjudge.net/problem/POJ-2029 题目大意: 有N棵树在一个n*m的田里,给出每颗树的坐标 用一个s*t的矩形去围,最多能围几棵树 思路: 用二维树状 ...
- POJ 2029 Get Many Persimmon Trees(DP||二维树状数组)
题目链接 题意 : 给你每个柿子树的位置,给你已知长宽的矩形,让这个矩形包含最多的柿子树.输出数目 思路 :数据不是很大,暴力一下就行,也可以用二维树状数组来做. #include <stdio ...
随机推荐
- Android开源client之LookAround学习(一)Application & 网络框架
之前看过开源clientLookAround(下载地址:http://download.csdn.net/detail/hualulove/7306807),链接:http://blog.csdn.n ...
- C库函数标准编程之fscanf()函数解读及其实验
函数功能 fscanf()函数用于从参数stream的文件流中读取format格式的内容,然后存放到...所指定的变量中去.字符串以空格或换行符结束(实验1中会对它进一步说明) 函数格式 字符格式说明 ...
- POJ 2524 :Ubiquitous Religions
id=2524">Ubiquitous Religions Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 231 ...
- 泥鳅般的const(一个小Demo彻底搞清楚)
#include<stdio.h> int main(){ int a = 3; int b = 5; /* C标准库函数中最常见格式, 目的是保护參数, ...
- linux下查看进城(ps)的方法 与 杀死进程(kill)的N种方法
PS查看进程 inux上进程有5种状态: 1. 运行(正在运行或在运行队列中等待) 2. 中断(休眠中, 受阻, 在等待某个条件的形成或接受到信号) 3. 不可中断(收到信号不唤醒和不可运行, 进程必 ...
- abstract修饰方法总结
abstract这种方法修饰,主要用在抽象类和抽象方法. 抽象的类是不可实例化的比如 public abstract class Test{ } 他能够含有抽象的方法 public abstract ...
- I深搜
<span style="color:#330099;">/* I - 深搜 基础 Time Limit:1000MS Memory Limit:10000KB 64b ...
- Ubuntu12.04编译Android4.0.1源码全过程-----附wubi安装ubuntu编译android源码硬盘空间不够的问题解决
昨晚在编译源码,make一段时间之后报错如下: # A fatal error has been detected by the Java Runtime Environment: # # SIGSE ...
- 简述负载均衡&CDN技术(转)
曾经见到知乎上有人问“为什么像facebook这类的网站需要上千个工程师维护?”,下面的回答多种多样,但总结起来就是:一个高性能的web系统需要从无数个角度去考虑他,大到服务器的布局,小到软件中某个文 ...
- 【设计优化】-使用缓冲(Buffer)提高程序性能
缓冲区是一块特定的内存区域.开辟缓冲区的目的是通过缓解应用程序上下层之间的性能差异,提高系统性能. 缓冲能够协调上层组件和下层组件的性能差异.当上层组件性能因为下层组件时,能够有效地降低上层组件对下层 ...