The 3n + 1 problem

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 32   Accepted Submission(s) : 15
Problem Description
Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs. Consider the following algorithm: 1. input n 2. print n 3. if n = 1 then STOP 4. if n is odd then n <- 3n + 1 5. else n <- n / 2 6. GOTO 2 Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.) Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16. For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.
 
Input
The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0. You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j. You can assume that no opperation overflows a 32-bit integer.
 
Output
For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).
 
Sample Input
1 10 100 200 201 210 900 1000
 
Sample Output
1 10 20 100 200 125 201 210 89 900 1000 174
 
Source
UVA
 
 #include <stdio.h>
#include <stdlib.h> int main()
{
long long T,N,i,sign,MAX,I,a,b;
while(scanf("%I64d%I64d",&T,&N)!=EOF)
{
a=(T<N)?T:N;
b=(T>N)?T:N;
for(i=a,MAX=;i<=b;i++)
{
I=i;
sign=;
while(I!=)
{
if(I%==)
{
I=*I+;
}
else
{
I=I/;
}
sign++;
}
if(MAX<sign)
MAX=sign;
}
printf("%I64d %I64d %I64d\n",T,N,MAX);
}
return ;
}

The 3n + 1 problem的更多相关文章

  1. UVa 100 - The 3n + 1 problem(函数循环长度)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  2. 烟大 Contest1024 - 《挑战编程》第一章:入门 Problem A: The 3n + 1 problem(水题)

    Problem A: The 3n + 1 problem Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 14  Solved: 6[Submit][St ...

  3. The 3n + 1 problem 分类: POJ 2015-06-12 17:50 11人阅读 评论(0) 收藏

    The 3n + 1 problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 53927   Accepted: 17 ...

  4. uva----(100)The 3n + 1 problem

     The 3n + 1 problem  Background Problems in Computer Science are often classified as belonging to a ...

  5. 【转】UVa Problem 100 The 3n+1 problem (3n+1 问题)——(离线计算)

    // The 3n+1 problem (3n+1 问题) // PC/UVa IDs: 110101/100, Popularity: A, Success rate: low Level: 1 / ...

  6. 100-The 3n + 1 problem

    本文档下载 题目: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_pro ...

  7. PC/UVa 题号: 110101/100 The 3n+1 problem (3n+1 问题)

     The 3n + 1 problem  Background Problems in Computer Science are often classified as belonging to a ...

  8. UVA 100 - The 3n+1 problem (3n+1 问题)

    100 - The 3n+1 problem (3n+1 问题) /* * 100 - The 3n+1 problem (3n+1 问题) * 作者 仪冰 * QQ 974817955 * * [问 ...

  9. classnull100 - The 3n + 1 problem

    新手发帖,很多方面都是刚入门,有错误的地方请大家见谅,欢迎批评指正  The 3n + 1 problem  Background Problems in Computer Science are o ...

随机推荐

  1. javascript history对象

    window.history.[属性|方法] 0.history对象记录了用户曾经浏览过的页面(URL),并可以实现浏览器前进与后退相似导航的功能. 1.属性 2.方法

  2. hdfs格式化hadoop namenode -format错误

    在对HDFS格式化,执行hadoop namenode -format命令时,出现未知的主机名的问题,异常信息如下所示: [shirdrn@localhost bin]$ hadoop namenod ...

  3. Struts2第二天

    Struts2第二天 昨天: 1.Action的编写方式:实现Action接口.继承ActionSupport.自定义pojo作为action 2.action调用方法:默认的execute.meth ...

  4. kali Rolling安装之后的一些常用配置总结

    添加普通用户 useradd -m -G sudo,video,audio,cdrom -s /bin/bash OKing把某个用户添加到组中: sudo usermod -a 用户名 -G 组名 ...

  5. sublime text3编译运行C,Java程序的一些配置

    环境:linux 64位 桌面环境: gnome Java编译运行 (1)Preferences --> Browse Packages --> 在该文件夹下新建build文件如: Myj ...

  6. droidcon 北京2016安卓技术大会——安卓领域国际盛会

    目前droidcon国际技术大会已成为安卓领域全球最有影响力.规模最大的技术大会,每年在世界各地举办,横跨四大洲,超过上万人次参加. droidcon国际技术大会于2009年由一个Android爱好者 ...

  7. dplyr 数据操作 数据过滤 (filter)

    在R的使用过程中我们几乎都绕不开Hadley Wickham 开发的几个包,前面说过的ggplot2.reshape2以及即将要讲的dplyr 因为这几个包可以非常轻易的使我们从复杂的数据操作中逃离, ...

  8. ggplot2 theme相关设置—文本调整

    在geom设置和scale设置之后,要想把图画的漂亮,theme设置是比不可少的 在theme 设置中element_text()是一项很重要的内容 element_text(family = NUL ...

  9. pthread_create线程创建的过程剖析(转)

    概述 在Linux环境下,pthread库提供的pthread_create()API函数,用于创建一个线程.线程创建失败时,它可能会返回ENOMEM或EAGAIN.这篇文章主要讨论线程创建过程中碰到 ...

  10. LeetCode OJ 1. Two Sum

    Given an array of integers, return indices of the two numbers such that they add up to a specific ta ...