Largest Rectangular Area in a Histogram
题目地址:https://oj.leetcode.com/problems/largest-rectangle-in-histogram/ ,刚開始事实上没做这个题,而是在做https://oj.leetcode.com/problems/maximal-rectangle/当中非常重要的一步就是用到Largest
Rectangular Area in a Histogram题中的算法。
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

Above is a histogram where width of each bar is 1, given height =
[2,1,5,6,2,3].

The largest rectangle is shown in the shaded area, which has area =
10 unit.
For example,
Given height = [2,1,5,6,2,3],
return 10.
參考这篇博文思想:http://www.geeksforgeeks.org/largest-rectangle-under-histogram/

For example, consider the following histogram with 7 bars of heights {6, 2, 5, 4, 5, 2, 6}. The largest possible rectangle possible is 12 (see the below figure, the max area rectangle is highlighted in red)
算法思想:
For every bar ‘x’, we calculate the area with ‘x’ as the smallest bar in the rectangle. If we calculate such area for every bar ‘x’ and find the maximum of all areas, our task is done. How to calculate area with ‘x’ as smallest bar? We need to know index
of the first smaller (smaller than ‘x’) bar on left of ‘x’ and index of first smaller bar on right of ‘x’. Let us call these indexes as ‘left index’ and ‘right index’ respectively.
We traverse all bars from left to right, maintain a stack of bars. Every bar is pushed to stack once. A bar is popped from stack when a bar of smaller height is seen. When a bar is popped, we calculate the area with the popped bar as smallest bar. How do we
get left and right indexes of the popped bar – the current index tells us the ‘right index’ and index of previous item in stack is the ‘left index’.
算法流程:
1) Create an empty stack.
2) Start from first bar, and do following for every bar ‘hist[i]‘ where ‘i’ varies from 0 to n-1.
……a) If stack is empty or hist[i] is higher than the bar at top of stack, then push ‘i’ to stack.
……b) If this bar is smaller than the top of stack, then keep removing the top of stack while top of the stack is greater. Let the removed bar be hist[tp]. Calculate area of rectangle with hist[tp] as smallest bar. For hist[tp], the ‘left index’
is previous (previous to tp) item in stack and ‘right index’ is ‘i’ (current index).
3) If the stack is not empty, then one by one remove all bars from stack and do step 2.b for every removed bar.
代码java实现
public class Solution {
public int largestRectangleArea(int[] height) {
int maxarea = 0;
Stack<Integer> sta = new Stack<>();
int top ;
int top_area;
int i = 0;
while(i<height.length){
if(sta.isEmpty() || height[sta.peek()]<=height[i] ){
sta.push(i++);
}else{
top = sta.pop();
top_area = height[top] * (sta.isEmpty()? i:i-sta.peek()-1);
if(top_area>maxarea){
maxarea = top_area;
}
}
}
while(!sta.isEmpty()){
top = sta.pop();
top_area = height[top] * (sta.isEmpty()? i:i-sta.peek()-1);
if(top_area>maxarea){
maxarea = top_area;
}
}
return maxarea;
}
}
时间复杂度:由于每一个元素仅仅push pop一次,时间复杂度O(n).
Largest Rectangular Area in a Histogram的更多相关文章
- Largest Rectangular Area in a Histogram 最大连续面积
在HankerRank遇到一题计算柱状图连续矩形面积的问题. 举例 hist = [3, 2, 3]. 在这个柱状图里面最大可以容纳一个high = 2 length = 3的连续矩形, 其面积 = ...
- 【Leetcode_easy】812. Largest Triangle Area
problem 812. Largest Triangle Area solution: class Solution { public: double largestTriangleArea(vec ...
- Largest Allowed Area【模拟+二分】
Largest Allowed Area 题目链接(点击) 题目描述 A company is looking for land to build its headquarters. It has a ...
- [Swift]LeetCode812. 最大三角形面积 | Largest Triangle Area
You have a list of points in the plane. Return the area of the largest triangle that can be formed b ...
- [LeetCode] Largest Triangle Area 最大的三角区域
You have a list of points in the plane. Return the area of the largest triangle that can be formed b ...
- LeetCode 812 Largest Triangle Area 解题报告
题目要求 You have a list of points in the plane. Return the area of the largest triangle that can be for ...
- 【LeetCode】812. Largest Triangle Area 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 三重循环 组合函数 日期 题目地址:https:// ...
- Gym 102091L Largest Allowed Area 【二分+二维前缀和】
<题目链接> 题目大意:给你一个由01组成的矩形,现在问你,该矩形中,最多只含一个1的正方形的边长最长是多少. 解题分析: 用二维前缀和维护一下矩形的01值,便于后面直接$O(1)$查询任 ...
- 812. Largest Triangle Area
static int wing=[]() { std::ios::sync_with_stdio(false); cin.tie(NULL); ; }(); class Solution { publ ...
随机推荐
- 百度云盘建svnserver步骤
安装tortoisesvn(略) 安装visualsvn(主server您可以使用)(略步骤)例如下面的安装文件夹后,: 注冊百度账号.进入百度云盘页面,建立目录,如mysvn. 下载百度云盘clie ...
- asm 盘头损失,破坏
BUG 14693394 – ORA-15196: INVALID ASM BLOCK HEADER [KFC.C:26076] [ENDIAN_KFBH] BUG 14758001 – ORA-15 ...
- Android:ViewPager扩展的具体解释——导航ViewPagerIndicator(有图片缓存,异步加载图片)
我们已经用viewpager该. github那里viewpager扩展,导航风格更丰富.这个开源项目ViewPagerIndicator.非常好用,但样品是比较简单,实际用起来是非常不延长.例如,在 ...
- Java写程序猿专访String2
2.如何推理2一个字符串是否具有相同的字符 例如"aaaabbc"随着"abcbaaa" 2种思想 import java.lang.reflect.Array ...
- MVC简单的认识
学习一个新知识,首先要了解的就是以下几个问题,它是什么?它能干什么?使用它有什么优点?这篇文章就环绕这几个问题来展开讨论. mvc不是一种编程语言,严格来说.它都不算是一门技术.它是开发软件时使用的一 ...
- WPF学习(4)逻辑树和可视树
前面几节说了一些WPF的基础,包括XAML和布局等.在接下来的几节,我们来说说WPF的核心概念,包括逻辑树和可视树.依赖对象和依赖属性.路由事件.命令这几个部分.本节介绍下逻辑树(Logical Tr ...
- 答读者问(5):关于数学程序猿的作用、r \\ u0026研发工作的实践要求和问题,如求职的影响
最近,有通过微博很多读者.微信沟通,我.我觉得我们学习.对于技术,我们很热情.我也学到了很多东西. 我提取了几个大家比較关心的问题予以答复.请有相同疑问的朋友參考一下. ,欢迎关注.) 版权声明:本文 ...
- Lazy<T>延迟初始化
延迟初始化:Lazy<T> 1. 概述 我们创建某一个对象需要很大的消耗,而这个对象在运行过程中又不一定用到,为了避免每次运行都创建该对象,这时候延迟初始化(也叫延迟实例化)就出场了. 延 ...
- 图解SSIS监视文件夹并自动导入数据
原文:图解SSIS监视文件夹并自动导入数据 演示案例:让系统自动监视文件夹,并把文件夹下面的excel文件导入到sql中,之后清空目录.这个过程以往都需要写程序来实现或者定时执行,现在可以用ssis来 ...
- SQL操作语句中的注意点
一 查询语句 1 distinctkeyword消除反复行 当查询的结果数据中出现反复数据时.在查询条件中加上distinctkeyword消除反复行: 如:select distinct Sno f ...