A

#include <bits/stdc++.h>
#define PI acos(-1.0)
#define mem(a,b) memset((a),b,sizeof(a))
#define TS printf("!!!\n")
#define pb push_back
#define inf 1e9
//std::ios::sync_with_stdio(false);
using namespace std;
//priority_queue<int,vector<int>,greater<int>> que; get min
const double eps = 1.0e-8;
typedef pair<int, int> pairint;
typedef long long ll;
typedef unsigned long long ull;
//const int maxn = 3e5 + 10;
const int maxm = ;
const int turn[][] = {{, }, { -, }, {, }, {, -}};
//priority_queue<int, vector<int>, less<int>> que;
//next_permutation
ll mod = 3e7;
int num[];
int main()
{
int n, d;
cin >> n >> d;
int anser = ;
for (int i = ; i <= n; i++)
{
cin >> num[i];
}
if (n == )
{
cout << << endl;
return ;
}
sort(num + , num + + n);
int now = num[n] - num[];
int l = ;
int r = n;
for (int i = n - ; i >= ; i--)
{
for (int j = ; j <= n - i; j++)
{
if (num[j + i] - num[j] <= d)
{
cout << n - i - << endl;
return ;
}
}
}
cout<<n-<<endl;
return ;
}

B

#include <bits/stdc++.h>
#define PI acos(-1.0)
#define mem(a,b) memset((a),b,sizeof(a))
#define TS printf("!!!\n")
#define pb push_back
#define inf 1e9
//std::ios::sync_with_stdio(false);
using namespace std;
//priority_queue<int,vector<int>,greater<int>> que; get min
const double eps = 1.0e-8;
typedef pair<int, int> pairint;
typedef long long ll;
typedef unsigned long long ull;
//const int maxn = 3e5 + 10;
const int maxm = ;
const int turn[][] = {{, }, { -, }, {, }, {, -}};
//priority_queue<int, vector<int>, less<int>> que;
//next_permutation
ll mod = 3e7;
int num[];
int main()
{
ll n, k, a, b;
cin >> n >> k >> a >> b;
ll now = n;
ll cost = ;
ll remain, aim;
if (k == )
{
cost += 1LL * a * (now - );
cout << cost << endl;
return ;
}
while (now != )
{
if (now < k)
{
cost += 1LL * a * (now - );
break;
}
remain = now % k;
cost += remain * a;
now -= remain;
aim = now / k;
cost += min(1LL * a * (now - aim), 1LL * b);
now = aim;
}
cout << cost << endl;
return ;
}

C

找字典序最小的比给定字符串S大的字符串T

#include <bits/stdc++.h>
#define PI acos(-1.0)
#define mem(a,b) memset((a),b,sizeof(a))
#define TS printf("!!!\n")
#define pb push_back
#define inf 1e9
//std::ios::sync_with_stdio(false);
using namespace std;
//priority_queue<int,vector<int>,greater<int>> que; get min
const double eps = 1.0e-8;
typedef pair<int, int> pairint;
typedef long long ll;
typedef unsigned long long ull;
//const int maxn = 3e5 + 10;
const int maxm = ;
const int turn[][] = {{, }, { -, }, {, }, {, -}};
//priority_queue<int, vector<int>, less<int>> que;
//next_permutation
ll mod = 3e7;
int num[];
int nextt[];
int main()
{
int n, k;
string a;
cin >> n >> k >> a;
for (int i = ; i < n; i++)
{
num[a[i] - 'a'] = ;
}
for (int i = ; i <= ; i++)
{
for (int j = i + ; j <= ; j++)
{
if (num[j])
{
nextt[i] = j;
break;
}
}
}
if (k > n)
{
cout << a;
int aim;
for (int i = ; i <= ; i++)
{
if (num[i])
{
aim = i;
break;
}
}
char ch = 'a' + aim;
for (int i = ; i <= k - n; i++)
{
cout << ch;
}
cout << endl;
}
else
{
int aim;
int cur;
for (int i = k - ; i >= ; i--)
{
if (nextt[a[i] - 'a'] != )
{
aim = nextt[a[i] - 'a'];
cur = i;
break;
}
}
for (int i = ; i < cur; i++)
{
cout << a[i];
}
char ch = aim + 'a';
cout << ch;
for (int i = ; i <= ; i++)
{
if (num[i])
{
aim = i;
break;
}
}
ch = aim + 'a';
for (int i = ; i <= k - cur - ; i++)
{
cout << ch;
}
cout << endl;
}
return ;
}

D

在01边界的时候更新答案范围即可

#include <bits/stdc++.h>
#define PI acos(-1.0)
#define mem(a,b) memset((a),b,sizeof(a))
#define TS printf("!!!\n")
#define pb push_back
#define inf 1e9
//std::ios::sync_with_stdio(false);
using namespace std;
//priority_queue<int,vector<int>,greater<int>> que; get min
const double eps = 1.0e-8;
typedef pair<int, int> pairint;
typedef long long ll;
typedef unsigned long long ull;
//const int maxn = 3e5 + 10;
const int maxm = ;
const int turn[][] = {{, }, { -, }, {, }, {, -}};
//priority_queue<int, vector<int>, less<int>> que;
//next_permutation
ll mod = 3e7;
int num[];
int minnum[];
int maxnum[];
int main()
{
int n;
cin >> n;
for (int i = ; i <= n; i++)
{
scanf("%d", &num[i]);
}
string a;
cin >> a;
for (int i = ; i <= n; i++)
{
int maxn = -;
for (int j = ; j <= ; j++)
{
maxn = max(maxn, num[i - j]);
}
maxnum[i] = maxn;
}
for (int i = ; i <= n; i++)
{
int minn = ;
for (int j = ; j <= ; j++)
{
minn = min(minn, num[i - j]);
}
minnum[i] = minn;
}
int l = -;
int r = ;
for (int i = ; i <= n - ; i++)
{
if (a[i] == '' && a[i - ] == '')
{
l = max(l, maxnum[i + ] + );
}
if (a[i] == '' && a[i - ] == '')
{
r = min(r, minnum[i + ] - );
}
}
cout << l << " " << r << endl;
return ;
}

E

单调队列优化DP

可以证明全局最小值<=局部最小值 所以全部块要不是一块一块的 要不就是C块里面的

因为每一个块有两种选择 所以DP方程为dp[i]=min(dp[i-1]+num[i],dp[i-c]+pre[i]-pre[i-c]-min(num[j]) ) [i-c+1<=j<=i]

dp[i]为到第i位最少需要的代价

#include <bits/stdc++.h>
#define PI acos(-1.0)
#define mem(a,b) memset((a),b,sizeof(a))
#define TS printf("!!!\n")
#define pb push_back
#define inf 1e9
//std::ios::sync_with_stdio(false);
using namespace std;
//priority_queue<int,vector<int>,greater<int>> que; get min
const double eps = 1.0e-10;
const double EPS = 1.0e-4;
typedef pair<int, int> pairint;
typedef long long ll;
typedef unsigned long long ull;
const int turn[][] = {{, }, { -, }, {, }, {, -}};
//priority_queue<int, vector<int>, less<int>> que;
//next_permutation
const int MAXN = 1e5 + ;
ll num[MAXN];
int q[MAXN];
int head, tail;
ll dp[MAXN];
ll pre[MAXN];
list<int> que;
int main()
{
int n, c;
cin >> n >> c;
for (int i = ; i <= n; i++)
{
scanf("%lld", num + i);
pre[i] = pre[i - ] + num[i];
}
for (int i = ; i <= n; i++)
{
dp[i] = dp[i - ] + num[i];
while (head >= tail && i - c >= q[tail])
{
tail++;
}
while (head >= tail && num[q[head]] > num[i])
{
head--;
}
q[++head] = i;
if (i >= c)
{
dp[i] = min(dp[i], dp[i - c] + pre[i] - pre[i - c] - num[q[tail]]);
}
}
cout << dp[n] << endl;
}

Codeforces 940 区间DP单调队列优化的更多相关文章

  1. [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)

    DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...

  2. Codeforces 1077F2 Pictures with Kittens (hard version)(DP+单调队列优化)

    题目链接:Pictures with Kittens (hard version) 题意:给定n长度的数字序列ai,求从中选出x个满足任意k长度区间都至少有一个被选到的最大和. 题解:数据量5000, ...

  3. Codeforces 445A Boredom(DP+单调队列优化)

    题目链接:http://codeforces.com/problemset/problem/455/A 题目大意:有n个数,每次可以选择删除一个值为x的数,然后值为x-1,x+1的数也都会被删除,你可 ...

  4. 【简洁易懂】CF372C Watching Fireworks is Fun dp + 单调队列优化 dp优化 ACM codeforces

    题目大意 一条街道有$n$个区域. 从左到右编号为$1$到$n$. 相邻区域之间的距离为$1$. 在节日期间,有$m$次烟花要燃放. 第$i$次烟花燃放区域为$a_i$ ,幸福属性为$b_i$,时间为 ...

  5. Luogu 2627 修建草坪 (动态规划Dp + 单调队列优化)

    题意: 已知一个序列 { a [ i ] } ,求取出从中若干不大于 KK 的区间,求这些区间和的最大值. 细节: 没有细节???感觉没有??? 分析: 听说有两种方法!!! 好吧实际上是等价的只是看 ...

  6. 1023: [SHOI2008]cactus仙人掌图(DP+单调队列优化)

    这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= = 然后,看到这种题,首先必须的就是缩点= = 缩点完之后呢,变成在树上找最长路了= =直接树形dp了 那么那些 ...

  7. P3084 [USACO13OPEN]照片Photo (dp+单调队列优化)

    题目链接:传送门 题目: 题目描述 Farmer John has decided to assemble a panoramic photo of a lineup of his N cows ( ...

  8. bzoj 1855 dp + 单调队列优化

    思路:很容易写出dp方程,很容易看出能用单调队列优化.. #include<bits/stdc++.h> #define LL long long #define fi first #de ...

  9. 股票交易(DP+单调队列优化)

    题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价为每股APi, ...

随机推荐

  1. hibernate一对一单项关联映射

    一.主键关联 1.两个实体对象的主键一样,以表明它们之间的一一对应关系: 2.不需要多余的外键字段来维护关系,仅通过主键来关联,即Person的主键要依赖IdCard的主键,他们共用一个主键值. Pe ...

  2. 【机器学习速成宝典】模型篇05朴素贝叶斯【Naive Bayes】(Python版)

    目录 先验概率与后验概率 条件概率公式.全概率公式.贝叶斯公式 什么是朴素贝叶斯(Naive Bayes) 拉普拉斯平滑(Laplace Smoothing) 应用:遇到连续变量怎么办?(多项式分布, ...

  3. ffmpeg转码指南

    Windows下面的安装: 浏览器打开https://ffmpeg.zeranoe.com/builds/ 选择好版本,位数如果不确定的话就下载32bit的,然后选择static,然后下载 下载完成后 ...

  4. leetcode-mid-math-202. Happy Number-NO

    mycode 关键不知道怎么退出循环.............其实只要有一个平方和以前出现过,那么整个计算过程就会重复 参考: class Solution(object): def isHappy( ...

  5. python调用c++/c 共享库,开发板上编译的一些坑!

    1.对于python,ctypes只能load动态库,但现在我的对象是一个静态库,而且我没有源代码,静态库在编译过程中没有加--fPIC参数,所以我也没办法将其编译为动态库,有没有什么方法在pytho ...

  6. 二、启动一款app演示

    一.下载aapt包 1. aapt即Android Asset Packaging Tool,在SDK的build-tools目录下.该工具可以查看apk包名和launcherActivity 2.打 ...

  7. 解决保存快照失败后redis无法写入的问题( Redis is configured to save RDB snapshots)

    MISCONF Redis is configured to save RDB snapshots, but is currently not able to persist on disk. Com ...

  8. 中国MOOC_零基础学Java语言_第4周 循环控制_2念整数

    2 念整数(5分) 题目内容: 你的程序要读入一个整数,范围是[-100000,100000].然后,用汉语拼音将这个整数的每一位输出出来. 如输入1234,则输出: yi er san si 注意, ...

  9. shell脚本批量开启防火墙端口

    # 注意:shell脚本批量执行命令,不能只写一个函数,然后把所有命令复制进去,之前试过这样是不行的.必须要有一个判断命令执行成功与否的语句 # 简单的命令可以不加结果判断符号,但是遇到解压包.sed ...

  10. 《深入浅出WPF》学习总结之控件与布局

    一.控件到底是什么 控件的本质是“数据+算法”——用户输入原始数据,算法处理原始数据并得到结果数据.问题就在于程序如何将结果数据展示给用户.同样一组数据,你可以使用LED阵列显示出来,或者是以命令行模 ...