最近在做一个目标检测算法,训练时用到了 bootstrap 策略,于是我将PASCAL的 Ground Truth 格式的读取函数从 Matlab 改写为 C++。PASCAL 的标注格式为:

# PASCAL Annotation Version 1.00
Image filename : "对应图片路径"
Image size (X x Y x C) : 宽 x 高 x 3
Database : "数据库名称"
Objects with ground truth : 1 { "PASperson" }
# Note that there might be other objects in the image
# for which ground truth data has not been provided.
# Top left pixel co-ordinates : (0, 0)
# Details for object 1 ("PASperson")
# Center point -- not available in other PASCAL databases -- refers
# to person head center
Original label for object 1 "PASperson" : "UprightPerson"
Center point on object 1 "PASperson" (X, Y) : (257, 187)
Bounding box for object 1 "PASperson" (Xmin, Ymin) - (Xmax, Ymax) : (195, 154) - (297, 468)

我写的函数如下:

#include "stdio.h"
#include "string.h"
#include "stdlib.h" // object bounding rect
struct GtRect {
int x_min; int y_min;
int x_max; int y_max;
}; // ground truth of one image
struct GtRecord {
char* image_name;
GtRect* objs;
int obj_num; int height;
int width; int channels;
}; // return true if c is in char set s
int _is_chars(char c, const char* s, int n)
{
for (int i = ; i != n; ++i) {
if (s[i] == c) {
return ;
}
}
return ;
} void _trim_l(char* inout, const char* s)
{
int len = strlen(inout);
int s_len = strlen(s);
int i = ;
for (;i != len; ++i) {
if (!_is_chars(inout[i], s, s_len)) {
break;
}
}
int d = i;
int new_len = len - d;
for (i = ; i != new_len; ++i) {
inout[i] = inout[i + d];
}
inout[new_len] = '\0';
} void _trim_r(char* inout, const char* s)
{
int len = strlen(inout);
int s_len = strlen(s);
int i = len - ;
for (;i != -; --i) {
if (!_is_chars(inout[i], s, s_len)) {
break;
}
}
inout[i + ] = '\0';
} inline void _trim_lr(char* inout, const char* s)
{
_trim_l(inout, s);
_trim_r(inout, s);
} // read ground truth (pascal format)
//************************************
// Name: gt_pascal_read
// Returns: GtRecord
// const char * path : groundtruth file path
//************************************
GtRecord gt_pascal_read(const char* path)
{
GtRecord ret = {, , , , , };
FILE* f;
fopen_s(&f, path, "r");
int obj_num = ;
int len = ;
GtRect rct;
while (fgets(BUF1, , f) != ) {
int match_type = _match_attr(BUF1);
switch (match_type) {
case :
// read image filename
sscanf_s(BUF1, _GT_ATTR[], BUF2, );
_trim_lr(BUF2, "\n\" ");
len = strlen(BUF2);
ret.image_name = (char*)malloc(len + );
memcpy(ret.image_name, BUF2, len + );
break;
case :
// read image size, channel
sscanf_s(BUF1, _GT_ATTR[], &ret.width, &ret.height,
&ret.channels);
break;
case :
// ignore database name
break;
case :
sscanf_s(BUF1, _GT_ATTR[], &rct.x_min,
&rct.y_min, &rct.x_max, &rct.y_max);
OBJ_BUF[obj_num++] = rct;
break;
case :
// ignore polygon
case :
// ignore pixel map
case :
// ignore label
break;
}
}
fclose(f);
ret.obj_num = obj_num;
if (obj_num > ) {
ret.objs = (GtRect*)malloc(sizeof(GtRect) * obj_num);
memcpy(ret.objs, OBJ_BUF, obj_num * sizeof(GtRect));
}
return ret;
} // release pascal ground truth
//************************************
// Name: gt_pascal_release
// Returns: void
// GtRecord * r
//************************************
void gt_pascal_release(GtRecord* r)
{
free(r->image_name);
free(r->objs);
r->image_name = ;
r->objs = ;
r->width = ;
r->height = ;
r->channels = ;
r->obj_num = ;
}

gt_pascal_read 函数忽略了 groundtruth 文件中的一些属性,例如数据库名称等,如果要加回,可以在函数的几个空的 case 中添加即可。PASCAL 官方提供了几个有用的 Matlab 脚本用于读取和生成这样的 groundtruth 文件,在算法开发的过程中要多利用这样的工具。

目标检测数据库 PASCAL 格式的 Ground Truth 的解析函数的更多相关文章

  1. 目标检测模型的性能评估--MAP(Mean Average Precision)

    目标检测模型中性能评估的几个重要参数有精确度,精确度和召回率.本文中我们将讨论一个常用的度量指标:均值平均精度,即MAP. 在二元分类中,精确度和召回率是一个简单直观的统计量,但是在目标检测中有所不同 ...

  2. [炼丹术]YOLOv5目标检测学习总结

    Yolov5目标检测训练模型学习总结 一.YOLOv5介绍 YOLOv5是一系列在 COCO 数据集上预训练的对象检测架构和模型,代表Ultralytics 对未来视觉 AI 方法的开源研究,结合了在 ...

  3. 【计算机视觉】目标检测中的指标衡量Recall与Precision

    [计算机视觉]目标检测中的指标衡量Recall与Precision 标签(空格分隔): [图像处理] 说明:目标检测性能指标Recall与Precision的理解. Recall与Precision ...

  4. 目标检测之YOLO V1

    前面介绍的R-CNN系的目标检测采用的思路是:首先在图像上提取一系列的候选区域,然后将候选区域输入到网络中修正候选区域的边框以定位目标,对候选区域进行分类以识别.虽然,在Faster R-CNN中利用 ...

  5. paddlepaddle目标检测之水果检测(yolov3_mobilenet_v1)

    一.创建项目 (1)进入到https://aistudio.baidu.com/aistudio/projectoverview/public (2)创建项目 点击添加数据集:找到这两个 然后创建即可 ...

  6. 深度学习与CV教程(13) | 目标检测 (SSD,YOLO系列)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  7. zz目标检测

    deep learning分类 目标检测-HyperNet-论文笔记 06-06 基础DL模型-Deformable Convolutional Networks-论文笔记 06-05 基础DL模型- ...

  8. (转) 技术揭秘:海康威视PASCAL VOC2012目标检测权威评测夺冠之道

    技术揭秘:海康威视PASCAL VOC2012目标检测权威评测夺冠之道 原创 2016-09-21 钟巧勇 深度学习大讲堂 点击上方“深度学习大讲堂”可订阅哦!深度学习大讲堂是高质量原创内容平台,邀请 ...

  9. 目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练

    将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as ...

随机推荐

  1. 定时刷新指定div层

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...

  2. webConfig的使用

    <sessionState mode="Off|InProc|StateServer|SQLServer" cookieless="true|false" ...

  3. linux 加多播协议(IGMP)

    可能你所用的内核编译时没有选中multicast的选项.   追问 感谢您的回复,但是我还是不太明白你说的multicast选项是什么意思.能更详细的说一下吗,谢谢.或者能直接用QQ或者MSN帮忙看看 ...

  4. du和df目录大小不一致

    最近遇到个问题 df查看基本没有空间了 但是查找大文件 也基本没有 ,原来是之前的大文件删除了 没有生效导致的 用如下命令,查找到相关进程ID 然后kill就行了 lsof | grep delete ...

  5. SpringBoot上传文件临时失效问题

    线上的系统中不能上传文件了,出现如下错误: org.springframework.web.multipart.MultipartException: Could not parse multipar ...

  6. Application 使用分析

    一. Application 分析 1. Application 简介 (1) Application 概念 Application 概念 : Application 属于组件范畴; -- 本质 : ...

  7. robotframework 配置过程中遇到的问题

    现有环境配置:操作系统: Win7 32bitPython 2.7.8Python 3.5.2Pycharm Community Edition 2016.3.2robotframework: 3.0 ...

  8. tomcat gc和内存

    tomcat启动参数,将JVM GC信息写入tomcat_gc.log CATALINA_OPTS='-Xms512m -Xmx4096m -XX:PermSize=64M -XX:MaxNewSiz ...

  9. zabbix报警后不会自动消除解决

    http://www.cnblogs.com/zhongkai-27/p/9984597.html

  10. 更新操作 关于json字符串的拼接、json字符串与json对象之间的转换

    更新操作  后台 /** * 更新人员 * @return "updateSdr" */ public String updateTheSdr(){ jsonstr = " ...