在开始之前,我们先来明确一下什么是数据驱动,在百度百科中数据驱动的解释是:数据驱动测试,即黑盒测试(Black-box Testing),又称为功能测试,是把测试对象看作一个黑盒子。利用黑盒测试法进行动态测试时,需要测试软件产品的功能,不需测试软件产品的内部结构和处理过程。数据驱动测试注重于测试软件的功能性需求,也即数据驱动测试使软件工程师派生出执行程序所有功能需求的输入条件。

 

 

这说的是什么?为什么我完全不懂!!!咱们来分析一下。

利用黑盒测试法进行动态测试时,需要测试软件产品的功能,不需测试软件产品的内部结构和处理过程 – 重点在测试功能,不需要考虑内部处理过程

也即数据驱动测试使软件工程师派生出执行程序所有功能需求的输入条件 – 重点在测试时候的输入条件

在实际的自动化测试中,数据驱动是通过数据的改变从而驱动自动化测试的执行,最终引起测试结果的改变,简单的来说,就是将测试数据与实际的测试代码区分开。

Python中大部分人最先接触的测试框架就是unittest,可是unittest本身并不支持数据驱动,需要借助ddt来实现。接着我们就用unittest+ddt来给大家看一下数据驱动。

ddt是 “Data-Driven Tests”的缩写。官方资料是:http://ddt.readthedocs.io/en/latest/。

下面是每个组件的简单介绍:

ddt.ddt:

装饰类,用于unittest.TestCase子类的类装饰器。

ddt.data:

添加到unittest.TestCase测试用例上的方法装饰器。

ddt.file_data(value):

添加到unittest.TestCase测试用例上的方法装饰器。

value应该是文件目录的路径。文件应该包含JSON编码的数据,可以是列表,也可以是dict。

如果文件中是列表,每个列表的值会作为测试用例参数,同时作为测试用例方法名后缀显示。

如果文件中是字典,字典的key会作为测试用例方法的后缀显示,字典的值会作为测试用例参数。

ddt.unpack:

传递的是复杂的数据结构时使用。比如使用元组或者列表,添加unpack之后,ddt会自动把元组或者列表对应到多个参数上。

我们来用实例感受一下每个组件,先用data来传入比较简单的值,来做数据驱动。

简单数据注入:

import ddt

import unittest

@ddt.ddt

class TestCase(unittest.TestCase):

def setUp(self):

print("Before every test case!")

@ddt.data(1,2,3,4,5,6)

def test_case_01(self,value):

print("value is: "+ str(value))

if __name__ == "__main__":

unittest.main()

运行中发现,有6组数据,一共执行了6次

 

测试方法后会被ddt加一个后缀,ddt会尝试把测试数据转化为后缀附在测试方法后,组成一个新的名字。

复杂数据注入:

如果尝试着用一些比较复杂的数据,比如元组/列表/字典,我们就需要调用unpack来实现,下面是一些例子

import ddt

import unittest

@ddt.ddt

class TestCase(unittest.TestCase):

def setUp(self):

print("Before every test case!")

@ddt.unpack

@ddt.data({'value1': '孙俪', 'value2': '邓超'},

{'value1': '蔡少芬', 'value2': '张晋'},

{'value1': '袁咏仪', 'value2': '张智霖'})

def test_case_01(self,value1,value2):

print("value1 is: " + value1)

print("value2 is: " + value2)

@ddt.unpack

@ddt.data((1,2),(3,4),(5,6))

def test_case_02(self, value1, value2):

print("value1 is: " + str(value1))

print("value2 is: " + str(value2))

@ddt.unpack

@ddt.data([1,9],[2,8],[3,7])

def test_case_03(self, value1, value2):

sum = value1 + value2

self.assertEqual(sum, 10)

if __name__ == "__main__":

unittest.main()

现在也有一种比较流行的处理方式,不借助unpack可以直接做字典数据的注入。

import ddt

import unittest

data = ({'value1': '孙俪', 'value2': '邓超'},

{'value1': '蔡少芬', 'value2': '张晋'},

{'value1': '袁咏仪', 'value2': '张智霖'})

@ddt.ddt

class TestCase(unittest.TestCase):

def setUp(self):

print("Before every test case!")

@ddt.data(*data)

def test_case_01(self,data):

print("value1 is: " + data['value1'])

print("value2 is: " + data['value2'])

if __name__ == "__main__":

unittest.main()

 

文件数据注入:

有时候,将测试数据直接写到Python文件里不利于我们对数据的管理,这时候,我们就可以借助文件来做数据的注入。

创建一个yml文件:

- 1

- 2

- 3

- 4

创建一个json文件:

{

"positive_integer_range": {

"start": 0,

"end": 2,

"value": 1

},

"negative_integer_range": {

"start": -2,

"end": 0,

"value": -1

},

"positive_real_range": {

"start": 0.0,

"end": 1.0,

"value": 0.5

},

"negative_real_range": {

"start": -1.0,

"end": 0.0,

"value": -0.5

}

}

然后将yml与json文件注入测试用例中

import ddt

import unittest

@ddt.ddt

class TestCase(unittest.TestCase):

def setUp(self):

print("Before every test case!")

@ddt.file_data('testdata_dic.json')

def test_case_01(self,start,end,value):

print("start is: " + str(start))

print("end is: " + str(end))

print("value is: " + str(value))

@ddt.file_data('testdata_list.yml')

def test_case_02(self, value):

print("value is: " + str(value))

if __name__ == "__main__":

unittest.main()

运行之后结果为:

 

这样,就为我们数据驱动的用法提供了多样性。

最后,希望本文能帮助到大家。

作  者:Testfan  Chris

出  处:微信公众号:自动化软件测试平台

版权说明:欢迎转载,但必须注明出处,并在文章页面明显位置给出文章链接

Python数据驱动DDT的应用的更多相关文章

  1. Python 数据驱动ddt 使用

    准备工作: pip install ddt 知识点: 一,数据驱动和代码驱动: 数据驱动的意思是  根据你提供的数据来测试的  比如 ATP框架 需要excel里面的测试用例 代码驱动是必须得写代码  ...

  2. python 数据驱动ddt使用,需要调用下面的代码,请挨个方法调试,把不用的注释掉

    #!/usr/bin/env/python # -*- coding: utf-8 -*- # @Time : 2018/12/15 15:27 # @Author : ChenAdong # @Em ...

  3. Python数据驱动ddt

    import ddtimport unittest """ddt模块包含了一个类的装饰器ddt和两个方法的装饰器: data:包含多个你想要传给测试用例的参数: file ...

  4. 【webdriver自动化】Python数据驱动工具DDT

    一.Python数据驱动工具ddt 1.  安装 ddt pip install ddt DDT是 “Data-Driven Tests”的缩写 资料:http://ddt.readthedocs.i ...

  5. python webdriver 测试框架-数据驱动DDT的例子

    先在cmd环境 运行 pip install ddt 安装数据驱动ddt模块  脚本: #encoding=utf-8 from selenium import webdriver import un ...

  6. Python3数据驱动ddt

    对于同一个方法执行大量数据的程序时,我们可以采用ddt数据驱动的方式,来对数据规范化整理及输出 一.需要使用python的ddt库,ddt,data,unpack方法 1.仅使用ddt和data,代码 ...

  7. Python 数据驱动工具:DDT

    背景 python 的unittest 没有自带数据驱动功能. 所以如果使用unittest,同时又想使用数据驱动,那么就可以使用DDT来完成. DDT是 “Data-Driven Tests”的缩写 ...

  8. Python 数据驱动 unittest + ddt

    一数据驱动测试的含义: 在百度百科上的解释是: 数据驱动测试,即黑盒测试(Black-box Testing),又称为功能测试,是把测试对象看作一个黑盒子.利用黑盒测试法进行动态测试时,需要测试软件产 ...

  9. python之数据驱动ddt操作(方法一)

    下载ddt并安装 Pip install ddt 或者官网下载安装 http://ddt.readthedocs.io/en/latest/ https://github.com/txels/ddt ...

随机推荐

  1. Tomcat远程调试参数

    Linux: 关闭防火墙 vim catalina.sh export CATALINA_OPTS="-server -Xdebug -Xnoagent -Djava.compiler=NO ...

  2. Python之Numpy:线性代数/矩阵运算

    当你知道工具的用处,理论与工具如何结合的时候,通常会加速咱们对两者的学习效率. 零 numpy 那么,Numpy是什么? NumPy(Numerical Python) 是 Python 语言的一个扩 ...

  3. Spring:注解(@suppresswarnings,@Valid,初始化静态配置数据,定时任务,@EnableAutoConfiguration)

    1.@suppresswarnings(" ") 2.@Valid @Valid注解用于校验,所属包为:javax.validation.Valid. ① 首先需要在实体类的相应字 ...

  4. 怎么在 localhost 下访问多个 Laravel 项目,通过一个IP访问多个项目(不仅仅是改变端口哦)

    server { listen 80; server_name blog.sweetsunnyflower.com; index index.html index.htm index.php; cha ...

  5. C#编程 XML文档

    XML 指可扩展标记语言,XML 被设计用来传输和存储数据.XML 被设计用来结构化.存储以及传输信息. xml文档展示 <?xml version="1.0" encodi ...

  6. jvm的学习笔记:二、类的初始化,代码实战(3)

    首次主动此用导致类的初始化 MyParent4 myParent4 = new MyParent4(); MyParent4 myParent5 = new MyParent4(); 输出: MyPa ...

  7. C++学习笔记-namespace

    指标识符的各种可见范围.C++标准程序库中的所有标识符都被定义于一个名为std的namespace中 关于iostream <iostream>和<iostream.h>格式不 ...

  8. SolidWorks学习笔记5创建基准面,基准线,基准点

    创建基准面 平面偏移方式 点击参考几何体,点击基准面 第一参考选中时,点击一个参考平面,粉色的 通过三个点 通过一个线和不在改线上的点 经过某一个点和某一个平面平行 一个平面绕一个轴(该轴平行或者在平 ...

  9. js ajax跨域被阻止 CORS 头缺少 'Access-Control-Allow-Origin'(转)

    今天ajax请求域名的时候出现 已阻止跨源请求:同源策略禁止读取位于 http://www.zuimeimami.com*****的远程资源.(原因:CORS 头缺少 'Access-Control- ...

  10. HDU 1284 钱币兑换问题 (动态规划 背包方案数)

    钱币兑换问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...