Pytorch笔记 (1) 初始神经网络
一、人工神经元
上方人工神经元中:
- 输入 * 权重 ——> 相当于 人神经元中 树突的功能
- 各输入 相加 ,再做非线性变化f ——> 相当于胞体的功能
- 将非线性变化的结果输出 ——> 相当于轴突
在非线性函数f固定的情况下,选择不同的权重,单个神经元 可以完成 不同的运算
但并不是全部,比如 : “或运算”
上述证明过程 可表示为: y = f( w[0] * x[0] + w[1] * w[1] + w[2] )
在 x[0] x[1] 两个输入 分别为 00 10 01 11 的情况下,最终的输出为 y = 0 1 1 1【或运算】
利用反证法 证明
二、人工神经网络
指多个神经元 ——> 组成的网络
【其中,某些神经元的 输出 会 作为 另外一些神经元的输入】
比如,用两个 权重不同的 神经元搭成的神经网络 实现或运算
神经网络可以模拟所有可能的运算
证明: 由非线性函数为 f() = max(.,0)的神经元组成的神经网络 可以模拟 任何闭区间上的连续分段线性函数
如果输入和输出直接的关系 不是分段 线性函数,还能不能用 神经网络模拟? ———— 当然可以
原因: 任意一个 输入/输出关系 都可以用分段线性函数来近似,只要分段点足够多,就可以非常准确地用 分段函数 来近似这个函数。而 分段线性函数,可以通过人工神经网络搭建来得到————> 只要人工神经网络 中的神经元 数目足够多,神经元之间的关系 足够复杂,就可以非常精确的模拟任意的 输入/ 输出关系 【即,万能近似定理】
三、神经网络的设计和权重的学习
- 神经网络结构的确定: 神经元个数越多,链接越复杂,能便是的 输入/输出 关系越多,对特定 输入/输出关系的表达 就 越精确,但也就越难找到 最合适的权重------最优的输入/输出关系 【中间 存在 折中关系】
- 神经网络中神经元权重的确定: 权重的选取 可以看作 是一个 优化问题 。 对于每一组确定的权重值,我们可以确定出优化问题的 收益或损失。当权重不合适时,优化问题的收益笑,损失大;权重合适时,优化问题的收益大,损失小 【通过调节权重,最大化收益,最小化损失,就可以得到合适的权重】
Pytorch笔记 (1) 初始神经网络的更多相关文章
- CNN学习笔记:卷积神经网络
CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作 ...
- [Pytorch] pytorch笔记 <三>
pytorch笔记 optimizer.zero_grad() 将梯度变为0,用于每个batch最开始,因为梯度在不同batch之间不是累加的,所以必须在每个batch开始的时候初始化累计梯度,重置为 ...
- [Pytorch] pytorch笔记 <二>
pytorch笔记2 用到的关于plt的总结 plt.scatter scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, ...
- [Pytorch] pytorch笔记 <一>
pytorch笔记 - torchvision.utils.make_grid torchvision.utils.make_grid torchvision.utils.make_grid(tens ...
- Pytorch笔记 (2) 初识Pytorch
一.人工神经网络库 Pytorch ———— 让计算机 确定神经网络的结构 + 实现人工神经元 + 搭建人工神经网络 + 选择合适的权重 (1)确定人工神经网络的 结构: 只需要告诉Pytorc ...
- 【学习笔记】循环神经网络(RNN)
前言 多方寻找视频于博客.学习笔记,依然不能完全熟悉RNN,因此决定还是回到书本(<神经网络与深度学习>第六章),一点点把啃下来,因为这一章对于整个NLP学习十分重要,我想打好基础. 当然 ...
- Python机器学习笔记:卷积神经网络最终笔记
这已经是我的第四篇博客学习卷积神经网络了.之前的文章分别是: 1,Keras深度学习之卷积神经网络(CNN),这是开始学习Keras,了解到CNN,其实不懂的还是有点多,当然第一次笔记主要是给自己心中 ...
- [基础]斯坦福cs231n课程视频笔记(三) 训练神经网络
目录 training Neural Network Activation function sigmoid ReLU Preprocessing Batch Normalization 权重初始化 ...
- Coursera Deep Learning笔记 改善深层神经网络:优化算法
笔记:Andrew Ng's Deeping Learning视频 摘抄:https://xienaoban.github.io/posts/58457.html 本章介绍了优化算法,让神经网络运行的 ...
随机推荐
- libcyusb
https://github.com/hmaarrfk/libcyusb/blob/master/include/cyusb.h
- python3之selenium.webdriver 库练习自动化谷歌浏览器打开百度自动百度关键字
import os,time,threading from selenium import webdriver from selenium.webdriver.common.keys import K ...
- 31.整数中1出现的次数(从1到n整数中1出现的次数)
题目描述 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了. ...
- 日志管理-rsyslog日志服务器及loganalyzer
一,日志基础 日志:记录时间,地点,任务,事件 格式:日期时间 主机 进程[pid]: 事件内容 rsyslog 特性: 多线程,UDP, TCP, SSL, TLS, RELP,MySQL, PGS ...
- HDU 6191 Query on A Tree ( 2017广西邀请赛 && 可持久化Trie )
题目链接 题意 : 给你一棵树.树上的每个点都有点权.之后有若干次问询.每次问询给出一个节点编号以及一个整数 X .问你以给出节点为根的子树中哪个节点和 X 异或最大.输出这个值 分析 : 看到这种树 ...
- 智能指针之shared_ptr基本概述
1.shared_ptr允许有多个指针指向同一个对象,unique_ptr独占所指向的对象. 2.类似于vector,智能指针也是模板.创建智能指针: shared_ptr<string> ...
- classpath说明
概念解释: classpath : 即项目中WEB-INF下面的classes目录; 应用: [01] src路径下的文件在编译后会放到WEB-INF/classes路径下.默认的classpath是 ...
- Acwing:102. 最佳牛围栏(前缀和 + 二分)
农夫约翰的农场由 NN 块田地组成,每块地里都有一定数量的牛,其数量不会少于1头,也不会超过2000头. 约翰希望用围栏将一部分连续的田地围起来,并使得围起来的区域内每块地包含的牛的数量的平均值达到最 ...
- javascript学习笔记之DOM
DOM(文档对象模型),描述了一个层次化的节点树 一.DOM NODE相关公共属性与方法 DOM中所有节点都实现了NODE接口,该接口的公共属性和方法如下: 1.节点基本属性 1)NodeType 节 ...
- Java NIO学习
Java NIO(转自:http://www.iteye.com/magazines/132-Java-NIO#585) Java NIO提供了与标准IO不同的IO工作方式: Channels,Buf ...