一、人工神经元

上方人工神经元中:

  1. 输入 * 权重 ——>  相当于 人神经元中  树突的功能
  2. 各输入 相加 ,再做非线性变化f ——>  相当于胞体的功能
  3. 将非线性变化的结果输出 ——> 相当于轴突

在非线性函数f固定的情况下,选择不同的权重,单个神经元 可以完成 不同的运算

但并不是全部,比如 : “或运算”

上述证明过程 可表示为: y = f( w[0] * x[0] + w[1] * w[1] + w[2]  )

在 x[0] x[1] 两个输入 分别为 00  10   01   11  的情况下,最终的输出为 y = 0 1 1 1【或运算】

利用反证法 证明

二、人工神经网络

指多个神经元 ——>  组成的网络

【其中,某些神经元的 输出 会 作为 另外一些神经元的输入】

比如,用两个 权重不同的 神经元搭成的神经网络 实现或运算

神经网络可以模拟所有可能的运算

证明: 由非线性函数为 f() = max(.,0)的神经元组成的神经网络 可以模拟 任何闭区间上的连续分段线性函数

如果输入和输出直接的关系 不是分段 线性函数,还能不能用 神经网络模拟? ———— 当然可以

原因:  任意一个 输入/输出关系 都可以用分段线性函数来近似,只要分段点足够多,就可以非常准确地用 分段函数 来近似这个函数。而 分段线性函数,可以通过人工神经网络搭建来得到————>  只要人工神经网络 中的神经元 数目足够多,神经元之间的关系 足够复杂,就可以非常精确的模拟任意的 输入/ 输出关系    【即,万能近似定理

三、神经网络的设计和权重的学习

  1. 神经网络结构的确定:    神经元个数越多,链接越复杂,能便是的 输入/输出 关系越多,对特定 输入/输出关系的表达 就 越精确,但也就越难找到 最合适的权重------最优的输入/输出关系   【中间 存在 折中关系
  2. 神经网络中神经元权重的确定:         权重的选取  可以看作  是一个 优化问题 。  对于每一组确定的权重值,我们可以确定出优化问题的 收益或损失。当权重不合适时,优化问题的收益笑,损失大;权重合适时,优化问题的收益大,损失小   【通过调节权重,最大化收益,最小化损失,就可以得到合适的权重

Pytorch笔记 (1) 初始神经网络的更多相关文章

  1. CNN学习笔记:卷积神经网络

    CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作 ...

  2. [Pytorch] pytorch笔记 <三>

    pytorch笔记 optimizer.zero_grad() 将梯度变为0,用于每个batch最开始,因为梯度在不同batch之间不是累加的,所以必须在每个batch开始的时候初始化累计梯度,重置为 ...

  3. [Pytorch] pytorch笔记 <二>

    pytorch笔记2 用到的关于plt的总结 plt.scatter scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, ...

  4. [Pytorch] pytorch笔记 <一>

    pytorch笔记 - torchvision.utils.make_grid torchvision.utils.make_grid torchvision.utils.make_grid(tens ...

  5. Pytorch笔记 (2) 初识Pytorch

    一.人工神经网络库 Pytorch ———— 让计算机  确定神经网络的结构 +   实现人工神经元 + 搭建人工神经网络 + 选择合适的权重 (1)确定人工神经网络的 结构: 只需要告诉Pytorc ...

  6. 【学习笔记】循环神经网络(RNN)

    前言 多方寻找视频于博客.学习笔记,依然不能完全熟悉RNN,因此决定还是回到书本(<神经网络与深度学习>第六章),一点点把啃下来,因为这一章对于整个NLP学习十分重要,我想打好基础. 当然 ...

  7. Python机器学习笔记:卷积神经网络最终笔记

    这已经是我的第四篇博客学习卷积神经网络了.之前的文章分别是: 1,Keras深度学习之卷积神经网络(CNN),这是开始学习Keras,了解到CNN,其实不懂的还是有点多,当然第一次笔记主要是给自己心中 ...

  8. [基础]斯坦福cs231n课程视频笔记(三) 训练神经网络

    目录 training Neural Network Activation function sigmoid ReLU Preprocessing Batch Normalization 权重初始化 ...

  9. Coursera Deep Learning笔记 改善深层神经网络:优化算法

    笔记:Andrew Ng's Deeping Learning视频 摘抄:https://xienaoban.github.io/posts/58457.html 本章介绍了优化算法,让神经网络运行的 ...

随机推荐

  1. libcyusb

    https://github.com/hmaarrfk/libcyusb/blob/master/include/cyusb.h

  2. python3之selenium.webdriver 库练习自动化谷歌浏览器打开百度自动百度关键字

    import os,time,threading from selenium import webdriver from selenium.webdriver.common.keys import K ...

  3. 31.整数中1出现的次数(从1到n整数中1出现的次数)

    题目描述 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了. ...

  4. 日志管理-rsyslog日志服务器及loganalyzer

    一,日志基础 日志:记录时间,地点,任务,事件 格式:日期时间 主机 进程[pid]: 事件内容 rsyslog 特性: 多线程,UDP, TCP, SSL, TLS, RELP,MySQL, PGS ...

  5. HDU 6191 Query on A Tree ( 2017广西邀请赛 && 可持久化Trie )

    题目链接 题意 : 给你一棵树.树上的每个点都有点权.之后有若干次问询.每次问询给出一个节点编号以及一个整数 X .问你以给出节点为根的子树中哪个节点和 X 异或最大.输出这个值 分析 : 看到这种树 ...

  6. 智能指针之shared_ptr基本概述

    1.shared_ptr允许有多个指针指向同一个对象,unique_ptr独占所指向的对象. 2.类似于vector,智能指针也是模板.创建智能指针: shared_ptr<string> ...

  7. classpath说明

    概念解释: classpath : 即项目中WEB-INF下面的classes目录; 应用: [01] src路径下的文件在编译后会放到WEB-INF/classes路径下.默认的classpath是 ...

  8. Acwing:102. 最佳牛围栏(前缀和 + 二分)

    农夫约翰的农场由 NN 块田地组成,每块地里都有一定数量的牛,其数量不会少于1头,也不会超过2000头. 约翰希望用围栏将一部分连续的田地围起来,并使得围起来的区域内每块地包含的牛的数量的平均值达到最 ...

  9. javascript学习笔记之DOM

    DOM(文档对象模型),描述了一个层次化的节点树 一.DOM NODE相关公共属性与方法 DOM中所有节点都实现了NODE接口,该接口的公共属性和方法如下: 1.节点基本属性 1)NodeType 节 ...

  10. Java NIO学习

    Java NIO(转自:http://www.iteye.com/magazines/132-Java-NIO#585) Java NIO提供了与标准IO不同的IO工作方式: Channels,Buf ...