[BZOJ3779]重组病毒:Link-Cut Tree+线段树
分析
其实其他的题解说的都很清楚了。
一个点出发感染到根结点所花费的时间是路径上虚边的条数+1。
RELEASE相当于\(access()\)。
RECENTER相当于\(makeroot()\)。(虽然换根和打通路径的先后顺序不同但仔细想想本质其实是一样的)
所以我们可以通过维护一棵LCT来快速知道哪些结点与其父亲结点的连边由实变虚或由虚变实。
剩下的就是[BZOJ3083]遥远的国度了。
时间复杂度\(O(nlog^2n)\)。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cctype>
#include <algorithm>
#include <vector>
#define rin(i,a,b) for(int i=(a);i<=(b);i++)
#define rec(i,a,b) for(int i=(a);i>=(b);i--)
#define trav(i,a) for(int i=head[(a)];i;i=e[i].nxt)
using std::cin;
using std::cout;
using std::endl;
typedef long long LL;
inline int read(){
int x=0;char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x;
}
const int MAXN=100005;
int n,m,root;
std::vector<int> e[MAXN],ee[MAXN];
int fa[MAXN],dep[MAXN],siz[MAXN],id[MAXN],num[MAXN],tot;
int sta[MAXN],top;
int ql,qr;
LL sum[MAXN<<2],atag[MAXN<<2],kk;
char opt[10];
struct lct{
int fa,ch[2];
int tag;
}a[MAXN];
inline void add_edge(int bg,int ed){
e[bg].push_back(ed);
}
void dfs(int x,int pre,int depth){
fa[x]=pre;
a[x].fa=pre;
dep[x]=depth;
id[x]=++tot;
num[tot]=x;
siz[x]=1;
rin(i,0,(int)e[x].size()-1){
int ver=e[x][i];
if(ver==pre) continue;
ee[x].push_back(ver);
dfs(ver,x,depth+1);
siz[x]+=siz[ver];
}
}
inline void subupd(int x,LL kkk);
inline double subquery(int x);
#define lc a[x].ch[0]
#define rc a[x].ch[1]
inline bool isroot(int x){
return a[a[x].fa].ch[0]!=x&&a[a[x].fa].ch[1]!=x;
}
inline void pushr(int x){
std::swap(lc,rc);
a[x].tag^=1;
}
inline void pushdown(int x){
if(!a[x].tag) return;
if(lc) pushr(lc);
if(rc) pushr(rc);
a[x].tag=0;
}
inline void rotate(int x){
int y=a[x].fa,z=a[y].fa;
int f=(a[y].ch[1]==x),g=a[x].ch[f^1];
if(!isroot(y)) a[z].ch[a[z].ch[1]==y]=x;
a[x].ch[f^1]=y;
a[y].ch[f]=g;
if(g) a[g].fa=y;
a[y].fa=x;
a[x].fa=z;
}
inline void splay(int x){
int y=x,z=0;
top=1;
sta[1]=y;
while(!isroot(y)) sta[++top]=y=a[y].fa;
while(top) pushdown(sta[top--]);
while(!isroot(x)){
y=a[x].fa,z=a[y].fa;
if(!isroot(y)){
if((a[y].ch[0]==x)==(a[z].ch[0]==y)) rotate(y);
else rotate(x);
}
rotate(x);
}
}
inline int findroot(int x){
while(pushdown(x),lc) x=lc;
return x;
}
inline void access(int x){
for(int y=0;x;x=a[y=x].fa){
splay(x);
if(rc){
subupd(findroot(rc),1);
}
rc=y;
if(rc){
subupd(findroot(rc),-1);
}
}
}
inline void makeroot(int x){
access(x);
splay(x);
pushr(x);
}
#undef lc
#undef rc
#define mid ((l+r)>>1)
#define lc (o<<1)
#define rc ((o<<1)|1)
inline void segpushdown(int o,int l,int r){
if(!atag[o]) return;
sum[lc]+=atag[o]*(mid-l+1);
sum[rc]+=atag[o]*(r-mid);
atag[lc]+=atag[o];
atag[rc]+=atag[o];
atag[o]=0;
}
void build(int o,int l,int r){
if(l==r){
sum[o]=dep[num[l]];
return;
}
build(lc,l,mid);
build(rc,mid+1,r);
sum[o]=sum[lc]+sum[rc];
}
void upd(int o,int l,int r){
if(ql>qr) return;
if(ql<=l&&r<=qr){
sum[o]+=kk*(r-l+1);
atag[o]+=kk;
return;
}
segpushdown(o,l,r);
if(mid>=ql) upd(lc,l,mid);
if(mid<qr) upd(rc,mid+1,r);
sum[o]=sum[lc]+sum[rc];
}
LL query(int o,int l,int r){
if(ql>qr) return 0;
if(ql<=l&&r<=qr) return sum[o];
segpushdown(o,l,r);
LL ret=0;
if(mid>=ql) ret+=query(lc,l,mid);
if(mid<qr) ret+=query(rc,mid+1,r);
return ret;
}
#undef mid
#undef lc
#undef rc
inline void subupd(int x,LL kkk){
kk=kkk;
if(id[root]<id[x]||id[root]>id[x]+siz[x]-1){
ql=id[x],qr=id[x]+siz[x]-1;
upd(1,1,n);
return;
}
else if(root==x){
ql=1,qr=n;
upd(1,1,n);
return;
}
else{
int l=0,r=(int)ee[x].size()-1,ver=0;
while(l<=r){
int mid=((l+r)>>1),verr=ee[x][mid];
if(id[verr]<=id[root]) ver=verr,l=mid+1;
else r=mid-1;
}
ql=1,qr=id[ver]-1;
upd(1,1,n);
ql=id[ver]+siz[ver],qr=n;
upd(1,1,n);
}
}
inline double subquery(int x){
if(id[root]<id[x]||id[root]>id[x]+siz[x]-1){
ql=id[x],qr=id[x]+siz[x]-1;
return (double)query(1,1,n)/siz[x];
}
else if(root==x){
ql=1,qr=n;
return (double)query(1,1,n)/n;
}
else{
int l=0,r=(int)ee[x].size()-1,ver=0;
LL ret=0;
while(l<=r){
int mid=((l+r)>>1),verr=ee[x][mid];
if(id[verr]<=id[root]) ver=verr,l=mid+1;
else r=mid-1;
}
ql=1,qr=id[ver]-1;
ret+=query(1,1,n);
ql=id[ver]+siz[ver],qr=n;
ret+=query(1,1,n);
return (double)ret/(n-siz[ver]);
}
}
int main(){
n=read(),m=read();
rin(i,2,n){
int u=read(),v=read();
add_edge(u,v);
add_edge(v,u);
}
root=1;
dfs(1,0,1);
build(1,1,n);
while(m--){
scanf("%s",opt+1);
int x=read();
if(opt[3]=='L'){
access(x);
}
else if(opt[3]=='C'){
makeroot(x);
root=x;
}
else{
printf("%.10lf\n",subquery(x));
}
}
return 0;
}
[BZOJ3779]重组病毒:Link-Cut Tree+线段树的更多相关文章
- [BZOJ3779]重组病毒(LCT+DFS序线段树)
同[BZOJ4817]树点涂色,只是多了换根操作,分类讨论下即可. #include<cstdio> #include<algorithm> #define lc ch[x][ ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- LCT(link cut tree) 动态树
模板参考:https://blog.csdn.net/saramanda/article/details/55253627 综合各位大大博客后整理的模板: #include<iostream&g ...
- Link Cut Tree 动态树 小结
动态树有些类似 树链剖分+并查集 的思想,是用splay维护的 lct的根是动态的,"轻重链"也是动态的,所以并没有真正的轻重链 动态树的操作核心是把你要把 修改/询问/... 等 ...
- 洛谷.3690.[模板]Link Cut Tree(动态树)
题目链接 LCT(良心总结) #include <cstdio> #include <cctype> #include <algorithm> #define gc ...
- 洛谷P3690 Link Cut Tree (动态树)
干脆整个LCT模板吧. 缺个链上修改和子树操作,链上修改的话join(u,v)然后把v splay到树根再打个标记就好. 至于子树操作...以后有空的话再学(咕咕咕警告) #include<bi ...
- 【刷题】洛谷 P3690 【模板】Link Cut Tree (动态树)
题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor ...
- P3690 【模板】Link Cut Tree (动态树)
P3690 [模板]Link Cut Tree (动态树) 认父不认子的lct 注意:不 要 把 $fa[x]$和$nrt(x)$ 混 在 一 起 ! #include<cstdio> v ...
- LuoguP3690 【模板】Link Cut Tree (动态树) LCT模板
P3690 [模板]Link Cut Tree (动态树) 题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两 ...
随机推荐
- docker--docker 网络管理
9 docker 网络管理 9.1 默认网络 1.查看docker网络: docker network ls Docker中默认的三种网络分别为bridge.host和none,其中名为bridge的 ...
- [Git] 023 Re:从零开始的 rebase 命令
1. 开门见山 我新建了一个本地仓库,并进行了一些操作 当前情况 查看(直观但不明了) 上图的第二条 "log" 命令详见 [Git] 024 log 命令的补充 的 " ...
- Oracle Replace函数的简单使用
REPLACE ( char, search_string [, replace_string]) 如果没有指定replace_string 变量的值,那么当发现search_string 变量的 ...
- FHJ学长的心愿 QDUOJ 数论
FHJ学长的心愿 原题链接,点我进去 题意 给你一个数N,让你求在\[C^{0}_{n} \ C^{1}_{n}\ C^{2}_{n}\ \dots \ C^{n}_{n}\]中有几个组合数是奇数. ...
- Hyper-V Centos7 虚拟机固定IP
在网上看到很多篇文章,自己也去试验过,结果实现的效果都不是很理想,并不是自己所需要的,下面是我自己研究,最后成功的经验,希望能够帮到大家.少走一些弯路. 需求 1.无论物理机的网络环境怎么变化,都需要 ...
- 最长公共子序列(LCS) Medium2
The company "21st Century Fruits" has specialized in creating new sorts of fruits by trans ...
- spring boot 枚举使用的坑2
上一篇说到在枚举当在controller的方法做参数时的坑,解决方法是配置了一个converter,后来想想,如果不闲每次都加一个注解麻烦的话,可以在参数前面加一个注解,添加一个解析器应该也可以解决这 ...
- Visual Studio 2019 密钥
Visual Studio 2019 EnterpriseBF8Y8-GN2QH-T84XB-QVY3B-RC4DF Visual Studio 2019 ProfessionalNYWVH-HT4X ...
- Python multiprocessing使用详解
multiprocessing包是Python中的多进程管理包. 与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程. 该进程可以运行在 ...
- MongoDB的使用学习之(六)MongoDB的高级查询之条件操作符
此文分为两点,主要是在第二点--java 语法,但是按顺序必须先把原生态的语法写出来 (还有一篇文章也是不错的:MongoDB高级查询用法大全(包含MongoDB命令语法和Java语法,其实就是我整理 ...