Description

quailty和tangjz正在玩一个关于线段的游戏。在平面上有n条线段,编号依次为1到n。其中第i条线段的两端点坐
标分别为(0,i)和(1,p_i),其中p_1,p_2,...,p_n构成了1到n的一个排列。quailty先手,他可以选择一些互不相交
的线段,将它们拿走,当然他也可以一条线段也不选。然后tangjz必须拿走所有剩下的线段,若有两条线段相交,
那么他就输了,否则他就赢了。注意若quailty拿走了全部线段,那么tangjz也会胜利。quailty深深喜欢着tangjz
,所以他不希望tangjz输掉游戏,请计算他有多少种选择线段的方式,使得tangjz可以赢得游戏。

Input

第一行包含一个正整数n(1<=n<=100000),表示线段的个数。
第二行包含n个正整数p_1,p_2,...,p_n(1<=p_i<=n),含义如题面所述。

Output

输出一行一个整数,即tangjz胜利的方案数,因为答案很大,请对998244353取模输出。

问题可以转化为:
给定一个序列,求将这个序列分成两个上升子序列的方案数.
令 $f_{i,j}$ 表示一个序列选 $i$,令一个序列的最大值为 $p_{j}$ 的方案数 ($j<i$).
考虑转移:

  • $f_{i,j}=f_{i-1,j},j<i-1$ 且 $p_{i-1}<p_{i}$
  • $f_{i,i-1}=\sum f_{i-1,k},p_{k}<p_{i}$

$f_{i,j}$ 的转移只和 $f_{i-1,?}$ 的转移有关,所以可以将第一维滚掉.
而每一次 $f$ 的更新只有两种:区间清零,用一个区间和来更新单点的点值.
这些操作可以用线段树来实现.

#include <cstdio>
#include <algorithm>
#define N 100006
#define mod 998244353
#define setIO(s) freopen(s".in", "r" , stdin)
using namespace std;
int a[N], n ;
struct Node
{
int sum, lazy ;
}t[N << 2];
inline void mark(int now)
{
t[now].sum = 0, t[now].lazy = 1;
}
inline void pushdown(int l, int r, int now)
{
int mid = (l + r) >> 1;
if(t[now].lazy)
{
mark(now << 1);
if(r > mid) mark(now << 1 | 1);
t[now].lazy = 0;
}
}
inline void pushup(int l, int r, int now)
{
int mid = (l + r) >> 1;
t[now].sum = t[now << 1].sum ;
if(r > mid) t[now].sum += t[now << 1 | 1].sum, t[now].sum %= mod ;
}
inline void update(int l, int r, int now, int p, int v)
{
if(l == r)
{
t[now].sum += v, t[now].sum %= mod;
return ;
}
int mid = (l + r) >> 1;
pushdown(l, r, now);
if(p <= mid) update(l, mid, now << 1, p, v);
else update(mid + 1, r, now << 1 | 1, p, v);
pushup(l, r, now);
}
inline int query(int l, int r, int now, int L, int R)
{
if(l >= L && r <= R) return t[now].sum ;
pushdown(l, r, now);
int mid = (l + r) >> 1, re = 0;
if(L <= mid) re += query(l, mid, now << 1, L, R);
if(R > mid) re += query(mid + 1, r, now << 1 | 1, L, R);
return re % mod;
}
int main()
{
// setIO("input");
int i , j ;
scanf("%d", &n);
for(i = 1 ; i <= n ; ++ i) scanf("%d", &a[i]);
update(0, n, 1, 0, 1);
for(i = 2 ; i <= n ; ++ i)
{
int sum = query(0, n , 1, 0, a[i] - 1);
if(a[i] < a[i - 1]) mark(1);
update(0, n, 1, a[i - 1], sum);
}
printf("%d\n", query(0, n, 1, 0, n) * 2 % mod);
return 0;
}

  

BZOJ 4881: [Lydsy1705月赛]线段游戏 动态规划 + 线段树的更多相关文章

  1. bzoj 4881 [Lydsy1705月赛]线段游戏

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4881 1.当一块相互交织的线段中有3个或以上两两相交的那种线段时,无解. 这就是最长下降子序 ...

  2. bzoj 4880 [Lydsy1705月赛]排名的战争 贪心

    [Lydsy1705月赛]排名的战争 Time Limit: 8 Sec  Memory Limit: 256 MBSubmit: 338  Solved: 69[Submit][Status][Di ...

  3. 「雅礼集训 2017 Day2」线段游戏(线段树懒标记“启发式下传”,李超树)

    题面 题解 加入一条线段,可以把它转化为在[L,R]区间内加一条线 y=ax+b (如果原线段与y轴平行,就相当于在{x1}处加一条线 y=max(y1,y2)) 我们可以把它加到线段树上,线段树上每 ...

  4. BZOJ4881 线段游戏(二分图+树状数组/动态规划+线段树)

    相当于将线段划分成两个集合使集合内线段不相交,并且可以发现线段相交等价于逆序对.也即要将原序列划分成两个单增序列.由dilworth定理,如果存在长度>=3的单减子序列,无解,可以先判掉. 这个 ...

  5. bzoj 2017 [Usaco2009 Nov]硬币游戏 动态规划

    [Usaco2009 Nov]硬币游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 431  Solved: 240[Submit][Status] ...

  6. bzoj 4883 [Lydsy1705月赛]棋盘上的守卫——并查集(思路!)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4883 把各行和各列看成n+m个点. 如果一下能防守行和列,就是最大匹配了.这是每两个左右部点 ...

  7. BZOJ 4883: [Lydsy1705月赛]棋盘上的守卫 最小生成树 + 建模

    Description 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须恰好放置一个纵向守卫.每个位置放置守卫的代价是不一样的,且每个位置 ...

  8. BZOJ 5129: [Lydsy1712月赛]树上传送 点分树+Dijkstra

    Description http://www.lydsy.com/JudgeOnline/upload/201712/prob12.pdf Input Output 暑假集训的时候点分树做的比较少,所 ...

  9. BZOJ4881: [Lydsy1705月赛]线段游戏(二分图)

    4881: [Lydsy1705月赛]线段游戏 Time Limit: 3 Sec  Memory Limit: 256 MBSubmit: 359  Solved: 205[Submit][Stat ...

随机推荐

  1. ElasticSearch 7.3.0 查询、修改、删除 文档操作

    PUT chuyuan/_doc/ { "name":"xiaolin", , "sex":"F", "lov ...

  2. 使用注解方式搭建SpringMVC

    1.以前搭建Spring MVC 框架一般都使用配置文件的方式进行,相对比较繁琐.spring 提供了使用注解方式搭建Spring MVC 框架的方式,方便简洁.使用Spring IOC 作为根容器管 ...

  3. c语言程序命名规范:函数、变量、数组、文件名

    函数: //send or recv data task void send_recv_data(void *pvParameters); //get socket error code. retur ...

  4. SSM笔记

    Spring Spring就像是整个项目中装配bean的大工厂,在配置文件中可以指定使用特定的参数去调用实体类的构造方法来实例化对象.也可以称之为项目中的粘合剂. Spring的核心思想是IoC(控制 ...

  5. centos 防火墙 iptables firewalld SELinux

    参考 Centos7 只启用iptables 禁用firewalld功能 java.net.NoRouteToHostException: 没有到主机的路由 相关内容 centos7 中才开始引用fi ...

  6. noip2013day2-华容道

    题目描述 小 \(B\) 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用 编程来完成华容道:给定一种局面,华容道是否根本就无法完成,如果能完成,最少需要多 少时间. 小 \(B ...

  7. Codeforces 1220D. Alex and Julian

    传送门 首先考虑怎样的集合一定是合法的 发现全部是奇数的集合一定合法,因为每次都是奇数连偶数,偶数连奇数 然后考虑如果集合同时有奇数和偶数是否一定不合法,结论是一定不合法,证明如下: 设某个奇数为 $ ...

  8. 扇形导航 css3

    本篇文章将通过对css3中的2d变化以及过渡进行分析设计 先放上最终效果图                 功能实现:1.给扇形home元素设置点击事件并添加2d旋转 2.给导航栏设置2d旋转 并通过 ...

  9. AutoLayout and Sizeclasses讲解

    iOS8和iPhone6发布已经过去蛮久了,广大的果粉终于迎来了大屏iPhone,再也不用纠结为大屏买三星舍苹果了…但是对于iOS开发人员来说,迎来了和Android开发开发一样的问题—>各种屏 ...

  10. 人工智能AI从入门到精通所有视频教程(140G)以及数据资料免费拿

    包含了人工智能AI从入门到精通所有视频教程(140G). 资料获取方式,关注公总号RaoRao1994,查看往期精彩-所有文章,即可获取资源下载链接 更多资源获取,请关注公总号RaoRao1994