GCD and LCM HDU 4497 数论

题意

给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能。注意123和321算两种情况。

解题思路

L代表LCM,G代表GCD。

\[x=(p_1^{i_1})*(p_2^{i_2})*(p_3^{i_3})\dots
\]

\[y=(p_1^{j_1})*(p_2^{j_2})*(p_3^{j_3})\dots
\]

\[z=(p_1^{k_1})*(p_2^{k_2})*(p_3^{k_3})\dots
\]

\[G=(p_1^{m_1})*(p_2^{m_2})*(p_3^{m_3})\dots
\]

\[L=(p_1^{n_1})*(p_2^{n_2})*(p_3^{n_3})\dots
\]

m是i j k 中得最小值,n是i j k中得最大值。

那么L/G得

\[L/G=(p_1^{r_1})*(p_2^{r_2})*(p_3^{r_3})\dots
\]

\[x/G=(p_1^{a_1})*(p_2^{a_2})*(p_3^{a_3})\dots
\]

\[y/G=(p_1^{b_1})*(p_2^{b_2})*(p_3^{b_3})\dots
\]

\[z/G=(p_1^{c_1})*(p_2^{c_2})*(p_3^{c_3})\dots
\]

那么 \(a\) \(b\) \(c\) 中一定有一个是 \(r\) ,也一定有一个是 \(0\) 为什么呢?因为x, y, z 分别处以最大公约数后,指数就相应的减少了,这样就会使得a, b, c,中有一个是0。

这样a,b, c,中就有三种情况。

r, 0, 0, C(3, 1)三种

r, 0, r,C(3, 1)三种

r, 0, 1~r-1 有(r-1)*A(3, 3)

有6*r种,

代码实现

/*15ms,200KB*/

#include<cstdio>

int main()
{
int t;
long long m, n, ans, i, count;
scanf("%d", &t);
while (t--)
{
scanf("%I64d%I64d", &m, &n);
if (n % m) puts("0");///注意特判
else
{
n /= m;
ans = 1;
for (i = 2; i * i <= n; i += 2)///不用求素数,因为范围很小(注意n在不断减小)
{
if (n % i == 0)
{
count = 0;
while (n % i == 0)
{
n /= i;
++count;
}
ans *= 6 * count;
}
if (i == 2)
--i;///小技巧
}
if (n > 1) ans *= 6;
printf("%I64d\n", ans);
}
}
return 0;
}

GCD and LCM HDU 4497 数论的更多相关文章

  1. GCD and LCM HDU - 4497(质因数分解)

    Problem Description Given two positive integers G and L, could you tell me how many solutions of (x, ...

  2. GCD and LCM HDU - 4497

    题目链接:https://vjudge.net/problem/HDU-4497 题意:求有多少组(x,y,z)满足gcd(x,y,z)=a,lcm(x,y,z)=b. 思路:对于x,y,z都可以写成 ...

  3. HDU 4497 数论+组合数学

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4497 解题思路:将满足条件的一组x,z,y都除以G,得到x‘,y',z',满足条件gcd(x',y' ...

  4. HDU 4497 GCD and LCM(数论+容斥原理)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  5. 数论——算数基本定理 - HDU 4497 GCD and LCM

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  6. hdu 4497 GCD and LCM 数学

    GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...

  7. HDU 4497 GCD and LCM (合数分解)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  8. hdu 4497(排列组合+LCM和GCD)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  9. hdu 4497 GCD and LCM (非原创)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

随机推荐

  1. LOJ bitset+分块 大内存毒瘤题

    题面 $ solution: $ 真的没有想到可以用分块. 但是可以发现一个性质,每个询问只关心这个点最后一次赋值操作,和这个赋值操作后的所有取 $ min $ 操作.这个感觉很有用,但是真的很难让人 ...

  2. linux下实现web数据同步的四种方式(性能比较)

    实现web数据同步的四种方式 ======================================= 1.nfs实现web数据共享2.rsync +inotify实现web数据同步3.rsyn ...

  3. Arduino-数学函数

  4. idea使用"svn"到项目报错Error:Cannot run program "svn" (in directory "E:\XXXXXX"):CreateProcess error=2,

    使用新项目工具idea界面上导入svn项目报错: Error:Cannot run program "svn" (in directory "D:\XXXXXX" ...

  5. PHP超大文件上传与下载

    前段时间做视频上传业务,通过网页上传视频到服务器. 视频大小 小则几十M,大则 1G+,以一般的HTTP请求发送数据的方式的话,会遇到的问题:1,文件过大,超出服务端的请求大小限制:2,请求时间过长, ...

  6. Spring——IOC与Bean容器

    [IOC] (1)IOC:控制反转,控制权的转移,应用程序本身不负责依赖对象的创建和维护,而是由外部容器负责创建和维护.也就是说由IOC容器在运行期间,动态地将某种依赖关系注入到对象之中 (2)DI: ...

  7. HDU-6703 array

    Description You are given an array a1,a2,...,an(∀i∈[1,n],1≤ai≤n). Initially, each element of the arr ...

  8. 将HTML5封装成android应用APK文件若干方法(转)

          HTML5拥有很多让人期待已久的新特性.HTML5的优势之一在于能够实现跨平台游戏编码移植,现在已经有很多公司在移动设备上使用HTML5技术.随着HTML5跨平台支持的不断增强和智能手机的 ...

  9. AI移动,缓慢转身设置(针对AI Character)

    AICharacter自身: Use Controller Rotation Yaw设为False Auto Possess AI 设为 Placed in World or Spawned Char ...

  10. (转)用C#实现实现简单的 Ping 的功能,用于测试网络是否已经连通

    本文转载自:http://blog.csdn.net/xiamin/archive/2009/02/14/3889696.aspx 用C#实现实现简单的 Ping 的功能,用于测试网络是否已经联通 1 ...