GCD and LCM HDU 4497 数论

题意

给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能。注意123和321算两种情况。

解题思路

L代表LCM,G代表GCD。

\[x=(p_1^{i_1})*(p_2^{i_2})*(p_3^{i_3})\dots
\]

\[y=(p_1^{j_1})*(p_2^{j_2})*(p_3^{j_3})\dots
\]

\[z=(p_1^{k_1})*(p_2^{k_2})*(p_3^{k_3})\dots
\]

\[G=(p_1^{m_1})*(p_2^{m_2})*(p_3^{m_3})\dots
\]

\[L=(p_1^{n_1})*(p_2^{n_2})*(p_3^{n_3})\dots
\]

m是i j k 中得最小值,n是i j k中得最大值。

那么L/G得

\[L/G=(p_1^{r_1})*(p_2^{r_2})*(p_3^{r_3})\dots
\]

\[x/G=(p_1^{a_1})*(p_2^{a_2})*(p_3^{a_3})\dots
\]

\[y/G=(p_1^{b_1})*(p_2^{b_2})*(p_3^{b_3})\dots
\]

\[z/G=(p_1^{c_1})*(p_2^{c_2})*(p_3^{c_3})\dots
\]

那么 \(a\) \(b\) \(c\) 中一定有一个是 \(r\) ,也一定有一个是 \(0\) 为什么呢?因为x, y, z 分别处以最大公约数后,指数就相应的减少了,这样就会使得a, b, c,中有一个是0。

这样a,b, c,中就有三种情况。

r, 0, 0, C(3, 1)三种

r, 0, r,C(3, 1)三种

r, 0, 1~r-1 有(r-1)*A(3, 3)

有6*r种,

代码实现

/*15ms,200KB*/

#include<cstdio>

int main()
{
int t;
long long m, n, ans, i, count;
scanf("%d", &t);
while (t--)
{
scanf("%I64d%I64d", &m, &n);
if (n % m) puts("0");///注意特判
else
{
n /= m;
ans = 1;
for (i = 2; i * i <= n; i += 2)///不用求素数,因为范围很小(注意n在不断减小)
{
if (n % i == 0)
{
count = 0;
while (n % i == 0)
{
n /= i;
++count;
}
ans *= 6 * count;
}
if (i == 2)
--i;///小技巧
}
if (n > 1) ans *= 6;
printf("%I64d\n", ans);
}
}
return 0;
}

GCD and LCM HDU 4497 数论的更多相关文章

  1. GCD and LCM HDU - 4497(质因数分解)

    Problem Description Given two positive integers G and L, could you tell me how many solutions of (x, ...

  2. GCD and LCM HDU - 4497

    题目链接:https://vjudge.net/problem/HDU-4497 题意:求有多少组(x,y,z)满足gcd(x,y,z)=a,lcm(x,y,z)=b. 思路:对于x,y,z都可以写成 ...

  3. HDU 4497 数论+组合数学

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4497 解题思路:将满足条件的一组x,z,y都除以G,得到x‘,y',z',满足条件gcd(x',y' ...

  4. HDU 4497 GCD and LCM(数论+容斥原理)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  5. 数论——算数基本定理 - HDU 4497 GCD and LCM

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  6. hdu 4497 GCD and LCM 数学

    GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...

  7. HDU 4497 GCD and LCM (合数分解)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  8. hdu 4497(排列组合+LCM和GCD)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  9. hdu 4497 GCD and LCM (非原创)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

随机推荐

  1. noip考前抱佛脚 数论小总结

    exCRT 求解韩信点兵问题,常见的就是合并不同\(mod\). 先mo一发高神的板子 for(R i=2;i<=n;++i){ ll Y1,Yi,lcm=Lcm(p[i],p[1]); exg ...

  2. bzoj2906 颜色 分块+块大小分析

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2906 题解 如果可以离线的话,那么这个题目就是一个莫队的裸题. 看上去这个数据范围也还会一个根 ...

  3. JS——数组中push对象,覆盖问题,每次都创建一个新的对象

    今天写运动框架时,发现将对象push进数组,后面的值会覆盖前面的值,最后输出的都是最后一次的值.其实这一切都是引用数据类型惹的祸.       如果你也有类似问题,可以继续看下去哦.       下面 ...

  4. js自执行函数前加个分号是什么意思?

    1.(function(){alert("1")})()(function(){alert("2")})()报错 2.(function(){alert(&qu ...

  5. 多数据源(sql server 2008,二个数据库不ip,)

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  6. web大文件下载+断点续传

    实现原理(1)首先获得下载文件的长度,然后设置本地文件的长度.(2)根据文件长度和线程数计算每条线程下载的数据长度和下载位置.如:文件的长度为6M,线程数为3,那么,每条线程下载的数据长度为2M,每条 ...

  7. linux php扩展模块安装

    安装Freetds Freetds 官方网站是 http://www.freetds.org,可以去官方网站下载程序,文中下载的是0.92.79版本. wget ftp://ftp.freetds.o ...

  8. 【PowerOJ1746&网络流24题】航空路线问题(费用流)

    题意: 思路: [问题分析] 求最长两条不相交路径,用最大费用最大流解决. [建模方法] 把第i个城市拆分成两个顶点<i.a>,<i.b>. 1.对于每个城市i,连接(< ...

  9. Oracle Like子句

    Oracle Like子句 作者:初生不惑 Oracle基础 评论:0 条 Oracle技术QQ群:175248146 在本教程中,您将学习如何使用Oracle LIKE运算符来测试列中的值是否与指定 ...

  10. Navicat Premuim远程连接oracle 提示 cannot load oci dll,193的解决方法

    转载:http://blog.51cto.com/xiao987334176/1640991 内网有一台windows server 2012,安装了Navicat 11.1.8 连接oracle的时 ...