The Child and Toy

time limit per test1 second

On Children's Day, the child got a toy from Delayyy as a present. However, the child is so naughty that he can't wait to destroy the toy.

The toy consists of n parts and m ropes. Each rope links two parts, but every pair of parts is linked by at most one rope. To split the toy, the child must remove all its parts. The child can remove a single part at a time, and each remove consume an energy. Let's define an energy value of part i as vi. The child spend vf1 + vf2 + ... + vfk energy for removing part i where f1, f2, ..., fk are the parts that are directly connected to the i-th and haven't been removed.

Help the child to find out, what is the minimum total energy he should spend to remove all n parts.

Input

The first line contains two integers n and m (1 ≤ n ≤ 1000; 0 ≤ m ≤ 2000). The second line contains n integers: v1, v2, ..., vn (0 ≤ vi ≤ 105). Then followed m lines, each line contains two integers xi and yi, representing a rope from part xi to part yi (1 ≤ xi, yi ≤ n; xi ≠ yi).

Consider all the parts are numbered from 1 to n.

Output

Output the minimum total energy the child should spend to remove all n parts of the toy.

Examples

input

4 3

10 20 30 40

1 4

1 2

2 3

output

40

input

4 4

100 100 100 100

1 2

2 3

2 4

3 4

output

400

input

7 10

40 10 20 10 20 80 40

1 5

4 7

4 5

5 2

5 7

6 4

1 6

1 3

4 3

1 4

output

160





就是给你n个点,每个点有个权值,然后你要把这些点都删掉,删一个点的代价是与这个点相连的未被删除的点的权值之和。。。



洗澡的时候顺便贪心了一下,从大到小就好了


#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e3 + 5;
struct lpl{
int num;
long long val;
}node[maxn];
vector<int> point[maxn];
int n, m;
long long ans, ld[maxn];
bool flag[maxn]; inline void putit()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i) node[i].num = i, scanf("%lld", &node[i].val), ld[i] = node[i].val;
for(int a, b, i = 1; i <= m; ++i){
scanf("%d%d", &a, &b);
point[a].push_back(b); point[b].push_back(a);
}
} inline bool cmp(lpl A, lpl B){return A.val > B.val;} int main()
{
putit();
sort(node + 1, node + n + 1, cmp);
for(int i = 1; i <= n; ++i){
flag[node[i].num] = true;
for(int now, j = point[node[i].num].size() - 1; j >= 0; --j){
now = point[node[i].num][j]; if(flag[now]) continue;
ans += ld[now];
}
}
cout << ans;
return 0;
}

Codeforces The Child and Toy的更多相关文章

  1. Codeforces Round #250 (Div. 1) A. The Child and Toy 水题

    A. The Child and Toy Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/438/ ...

  2. Codeforces 437C The Child and Toy(贪心)

    题目连接:Codeforces 437C  The Child and Toy 贪心,每条绳子都是须要割断的,那就先割断最大值相应的那部分周围的绳子. #include <iostream> ...

  3. Codeforces Round #250 Div. 2(C.The Child and Toy)

    题目例如以下: C. The Child and Toy time limit per test 1 second memory limit per test 256 megabytes input ...

  4. cf437C The Child and Toy

    C. The Child and Toy time limit per test 1 second memory limit per test 256 megabytes input standard ...

  5. codeforces 437C The Child and Toy

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...

  6. Codeforces Round #250 (Div. 2) C、The Child and Toy

    注意此题,每一个部分都有一个能量值v[i],他移除第i部分所需的能量是v[f[1]]+v[f[2]]+...+v[f[k]],其中f[1],f[2],...,f[k]是与i直接相连(且还未被移除)的部 ...

  7. Codeforces #250 (Div. 2) C.The Child and Toy

    之前一直想着建图...遍历 可是推例子都不正确 后来看数据好像看出了点规律 就抱着试一试的心态水了一下 就....过了..... 后来想想我的思路还是对的 先抽象当前仅仅有两个点相连 想要拆分耗费最小 ...

  8. The Child and Toy

    Codeforces Round #250 (Div. 2) C:http://codeforces.com/problemset/problem/437/C 题意:给以一个无向图,每个点都有一点的权 ...

  9. CF(437C)The Child and Toy(馋)

    意甲冠军:给定一个无向图,每个小点右键.操作被拉动所有点逐一将去,直到一个点的其余部分,在连边和点拉远了点,在该点右点的其余的费用.寻找所需要的最低成本的运营完全成本. 解法:贪心的思想,每次将剩余点 ...

随机推荐

  1. RESET - 把一个运行时参数值恢复为缺省值

    SYNOPSIS RESET name RESET ALL DESCRIPTION 描述 RESET 将运行时参数恢复为缺省值. RESET 是下面语句的一个变种 SET parameter TO D ...

  2. java this关键字的用法

  3. 【串线篇】Mybatis缓存之一级缓存

    1.体会 一级缓存:MyBatis:SqlSesion级别的缓存:默认存在,不需要设置. 机制:只要之前查询过的数据,mybatis就会保存在一个缓存中(Map):下次获取直接从缓存中拿:当前sess ...

  4. docker:python与docker

    一:环境准备 pycharm:专业版(windows) docker ce 免费版(ubantu16.04) os: os:防火墙 二:开发流程 pycharm中开发环境搭建的工作原理: 1. pyc ...

  5. C#高级编程(32章)ADO.net

    32.2高效地使用连接 sqlConnection类是针对sql的,而OleDbConnection 是针对其他比如access的,另外还有odbcConnection是针对odbc的,sql的访问优 ...

  6. 利用HTTP、DNS通道测试无回显的命令执行

    windows下通过start命令 for /F %X in ('whoami') do start http://uusifci7x1s0hcrny1lkqwqyjppfd4.burpcollabo ...

  7. hover()函数的用法

    定义和用法 hover() 方法规定当鼠标指针悬停在被选元素上时要运行的两个函数. 实例 当鼠标指针悬停在上面时,改变 <p> 元素的背景颜色: $("p").hove ...

  8. Docker安装RMQ

    原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11752934.html 进入rabbitmq的docker hub镜像仓库地址:https://hub ...

  9. 洛谷P3374(线段树)(询问区间和,支持单点修改)

    洛谷P3374 //询问区间和,支持单点修改 #include <cstdio> using namespace std; ; struct treetype { int l,r,sum; ...

  10. centos6.8下安装nginx

    我用的阿里云上的镜像,make的时候总是出错,后来说是gcc安装不完整,要重新用下面命令安装 下: yum install gcc gcc-c++ gcc-g77 接下来下载nginx用到的一些库 w ...