1、初始化k个簇中心。

2、更新所有样本点簇归属:样本点到哪个簇中心点最近就属于哪个簇。

3、重新计算每个簇的中心点(直到簇中心点不再变化或达到更新最大次数)

#k-means伪代码
import numpy as np
import copy
#计算欧氏距离
def get_distance(X,Y):
return np.sum((X-Y)**2)**0.5
def calc_mean(X): #计算中心点,每一维取均值
l=len(X[0])
list_mean=[]
for i in range(l):
s=0
for j in X:
s+=j[i]
m=s/len(X)
list_mean.append(m)
return list_mean def k_means(x_train,k,max_iter):
num_iter = 0
#初始簇中心
cluster_center = x_train[:k]
pre_cluster_center = copy.deep_copy(cluster_center) #上一次的簇中心点
#开始迭代
while num_iter<max_iter:
#临时变量
clusters_data={} #字典{簇下标:坐标}
for i in x_train:
cluster_dists=[]
for index,cluster in enumerate(cluster_center):
distance=get_distance(i,cluster)
cluster_dists.append((index,distance)) #每个样本到中心点的距离 cluster_dists.sort(key=lambda x:x[1]) #升序
min_index,min_dist=cluster_dists[0] #取距离最近 if min_index not in clusters_data:
clusters_data[min_index]=[]
clusters_data[min_index].append(i) #数据添加到临时变量中 #更新簇中心点
for index in clusters_data:
cluster_center[index]=calc_mean(clusters_data[index])
if pre_cluster_center == cluster_center:
break #如果簇中心点不再变化,那么结束
else:
pre_cluster_center = copy.deep_copy(cluster_center) #拷贝一下
return cluster_center #返回最终的簇中心点

k-means伪代码的更多相关文章

  1. KNN 与 K - Means 算法比较

    KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...

  2. 软件——机器学习与Python,聚类,K——means

    K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...

  3. 快速查找无序数组中的第K大数?

    1.题目分析: 查找无序数组中的第K大数,直观感觉便是先排好序再找到下标为K-1的元素,时间复杂度O(NlgN).在此,我们想探索是否存在时间复杂度 < O(NlgN),而且近似等于O(N)的高 ...

  4. 网络费用流-最小k路径覆盖

    多校联赛第一场(hdu4862) Jump Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  5. numpy.ones_like(a, dtype=None, order='K', subok=True)返回和原矩阵一样形状的1矩阵

    Return an array of ones with the same shape and type as a given array. Parameters: a : array_like Th ...

  6. [DL学习笔记]从人工神经网络到卷积神经网络_1_神经网络和BP算法

    前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工 ...

  7. <机器学习>无监督学习算法总结

    本文仅对常见的无监督学习算法进行了简单讲述,其他的如自动编码器,受限玻尔兹曼机用于无监督学习,神经网络用于无监督学习等未包括.同时虽然整体上分为了聚类和降维两大类,但实际上这两类并非完全正交,很多地方 ...

  8. 机器学习算法的基本知识(使用Python和R代码)

    本篇文章是原文的译文,然后自己对其中做了一些修改和添加内容(随机森林和降维算法).文章简洁地介绍了机器学习的主要算法和一些伪代码,对于初学者有很大帮助,是一篇不错的总结文章,后期可以通过文中提到的算法 ...

  9. 当我们在谈论kmeans(2)

        本稿为初稿,后续可能还会修改:如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/ 其他:建设中- 当我们在谈论kmeans(2 ...

  10. scikit-learn包的学习资料

    http://scikit-learn.org/stable/modules/clustering.html#k-means http://my.oschina.net/u/175377/blog/8 ...

随机推荐

  1. ABAP 实现内表自定义的F4功能

    “实现多列内容的F4功能 REPORT Z_TAB_TEST.   TYPES: shlp_descr TYPE shlp_descr .   DATA: BEGIN OF itab OCCURS 0 ...

  2. python学习道路即将结束

    其实今天算是失眠了,所以打算整理一下自己的学习内容了! 今天是我看视频学习的第六天,已经学习到定义类和对象了,有时候回想python这门语言真的很入门吧,各种语法比较简易能懂. 入门首选 print( ...

  3. ENVI-IDL的MATH_DOIT和CF_DOIT函数(对FID和POS参数的讨论)

    MATH_DOIT相当于ENVI的band math,可以完成各种波段运算.参数比较简单,EXP为运算公式的字符串,其他参数均为常见参数. CF_DOIT可以将已有的文件保存为ENVI格式文件,相当于 ...

  4. Dubbo从入门到精通

    1.在Dubbo中注解的使用 2.Dubbo启动时qos-server can not bind localhost:22222错误解决 3.Dubbo配置方式详解

  5. Spark架构角色及基本运行流程

    1. 集群角色 Application:基于spark的用户程序,包含了一个Driver program 和集群中多个Executor Driver Program:运行application的mai ...

  6. Who will be punished

    Who will be punished Problem Description This time,suddenly,teacher Li wants to find out who have mi ...

  7. C++ day01 预备知识、C++综述、教材、推荐阅读。

    C++ day01: 1.预备知识? 1)什么是编程 编程,即编订程序. 程序 = 数据 + 算法(蛋糕 = 糖.鸡蛋.奶油 + 打鸡蛋.加糖.烤) 2)编程语言 最初的编程是用二进制代码(即“机器码 ...

  8. CF 1178E Archaeology 题解

    题面 这道题竟然是E?还是洛谷中的黑题? wow~!! 于是就做了一下: 然后一下就A了:(这并不代表想的容易,而是写的容易) 这道题就是骗人的!! 什么manacher,什么回文自动机,去靠一边站着 ...

  9. Qt两个类通过信号槽通信

    qt需要通过信号槽来通信,connect的时候总是返回false,请教了公司的一个小哥,才解决了问题,虽然是个很白痴的问题. bool b = QObject::connect(m_pCollectO ...

  10. Head First PHP&MySQl第二章代码

    PHP: <html> <head> <title>外星人绑架了我--报道一起绑架</title> </head> <body> ...