题目

分析

虽然我们很难求出\(\sum_{i=n}^mjoy(i)\),

但是我们可以分别求出\(\sum_{i=1}^mjoy(i)\)和\(\sum_{i=1}^{n-1}joy(i)\),相减就可以了。

如果我们要求\(\sum_{i=1}^xjoy(i)\)

设x的长度为len,

接着枚举i,求出所有i位数的贡献。

分两种情况:

当len>i

接着我们枚举一个位置j,

k为他的相对位置,

再枚举j和k这两个位置分别取什么数,设分别取p和q。

因为这个i位数一定小于x,所以剩下的位置可以随便取(注意j、k重合的情况,以及首位只能取1~9)



每个这样的j、k、p和q,贡献就是\(p*q*方案数\)

当len=i

这部分有点麻烦,因为这个i位数不能大于x

同样枚举一个位置j,k为他的相对位置,再枚举j和k这两个位置分别取什么数,设分别取p和q。

所以,我们打一个数位dp,从首位开始做

设\(f_{l,0或1}\)表示,做完了前l位,这前l位是否与x的前l位相等,是为1,否则为0。

转移很简单,对于l=j、l=k的情况特殊判断。

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const long long maxlongint=2147483647;
const long long mo=1000000007;
const long long N=50005;
using namespace std;
long long n,m,ans,a[N],mi[19],f[20][2];
long long mi1(long long x,long long y)
{
long long sum=1;
while(y)
{
if(y&1) sum=sum*x%mo;
x=x*x%mo;
y/=2;
}
return sum;
}
long long cale(long long x)
{
long long sum=0;
for(long long i=1;x>mi[i] && i<=18;i++)
{
if(x/mi[i+1])
{
for(long long j=1;j<=i;j++)
{
long long k=(i-j+1);
if(j==k)
{
if(i==1)
{
sum=(sum+285)%mo;
}
else
{
sum=(sum+285*9*mi1(10,i-2)%mo)%mo;
}
}
else
if(j==1 || k==1)
{
sum=(sum+45*45*mi1(10,i-2)%mo)%mo;
}
else
{
sum=(sum+45*45*9*mi1(10,i-3)%mo)%mo;
}
}
}
else
{
for(long long j=1;j<=i;j++)
{
long long k=(i-j+1);
if(j!=k)
for(long long p=1;p<=9;p++)
for(long long q=1;q<=9;q++)
{
long long num=p*mi[j]+q*mi[k],value=0;
if(num<=x)
{
memset(f,0,sizeof(f));
if(j==i)
{
if(p==x/mi[i]) f[i][1]=1;
else f[i][0]=1;
}
else
if(k==i)
{
if(q==x/mi[i]) f[i][1]=1;
else f[i][0]=1;
}
else
{
for(int l=1;l*mi[i]<=x;l++) f[i][0]++;
f[i][0]--;
f[i][1]++;
}
for(int l=i-1;l>=1;l--)
{
if(l==j)
{
if(p>(x%mi[l+1])/mi[l])
f[l][0]=(f[l][0]+f[l+1][0])%mo;
else
if(p==(x%mi[l+1])/mi[l])
{
f[l][1]=(f[l][1]+f[l+1][1])%mo;
f[l][0]=(f[l][0]+f[l+1][0])%mo;
}
else
{
f[l][0]=(f[l][0]+f[l+1][0]+f[l+1][1])%mo;
}
}
else
if(l==k)
{
if(q>(x%mi[l+1])/mi[l])
f[l][0]=(f[l][0]+f[l+1][0])%mo;
else
if(q==(x%mi[l+1])/mi[l])
{
f[l][1]=(f[l][1]+f[l+1][1])%mo;
f[l][0]=(f[l][0]+f[l+1][0])%mo;
}
else
{
f[l][0]=(f[l][0]+f[l+1][0]+f[l+1][1])%mo;
}
}
else
for(int l1=0;l1<=9;l1++)
{
if(l1>(x%mi[l+1])/mi[l])
f[l][0]=(f[l][0]+f[l+1][0])%mo;
else
if(l1==(x%mi[l+1])/mi[l])
{
f[l][1]=(f[l][1]+f[l+1][1])%mo;
f[l][0]=(f[l][0]+f[l+1][0])%mo;
}
else
{
f[l][0]=(f[l][0]+f[l+1][0]+f[l+1][1])%mo;
}
}
}
value=(f[1][0]+f[1][1])%mo;
sum=(sum+q*p%mo*value%mo)%mo;
}
}
}
long long j=i/2+1;
if(i%2)
for(int p=1;p<=9;p++)
if(p*mi[j]<=x)
{
memset(f,0,sizeof(f));
if(j==i)
{
if(p==(x%mi[i+1])/mi[i]) f[i][1]=1;
else f[i][0]=1;
}
else
{
for(int l=1;l*mi[i]<=x;l++)
{
f[i][0]++;
}
f[i][0]--;
f[i][1]++;
}
for(int l=i-1;l>=1;l--)
{
if(l==j)
{
if(p>(x%mi[l+1])/mi[l])
f[l][0]=(f[l][0]+f[l+1][0])%mo;
else
if(p==(x%mi[l+1])/mi[l])
{
f[l][1]=(f[l][1]+f[l+1][1])%mo;
f[l][0]=(f[l][0]+f[l+1][0])%mo;
}
else
{
f[l][0]=(f[l][0]+f[l+1][0]+f[l+1][1])%mo;
}
}
else
for(int l1=0;l1<=9;l1++)
{
if(l1>(x%mi[l+1])/mi[l])
f[l][0]=(f[l][0]+f[l+1][0])%mo;
else
if(l1==(x%mi[l+1])/mi[l])
{
f[l][1]=(f[l][1]+f[l+1][1])%mo;
f[l][0]=(f[l][0]+f[l+1][0])%mo;
}
else
{
f[l][0]=(f[l][0]+f[l+1][0]+f[l+1][1])%mo;
}
}
}
sum=(sum+p*p%mo*(f[1][0]+f[1][1])%mo)%mo;
}
}
}
return sum;
}
int main()
{
scanf("%lld%lld",&n,&m);
mi[1]=1;
for(long long i=2;i<=19;i++)
{
mi[i]=mi[i-1]*10;
}
printf("%lld",(cale(m)-cale(n-1)+mo)%mo);
}

【NOIP2016提高A组模拟9.24】我的快乐时代的更多相关文章

  1. 【NOIP2016提高A组模拟9.24】总结

    第一题纯模拟,结果那个出题人脑子似乎进水了,空间限制开了1G!!! 导致我捉摸了半天为什么空间要开那么大,最后只能得出上面的结论. 第二题是个矩阵快速幂,比赛上我没把递推式求出来,但是根据各种乱搞,得 ...

  2. 【NOIP2016提高A组模拟9.24】天使的分裂

    题目 分析 这题可以递推, 但是\(O(n)\)还是会超时, 就用矩阵快速幂. #include <cmath> #include <iostream> #include &l ...

  3. 【JZOJ4799】【NOIP2016提高A组模拟9.24】我的快乐时代

    题目描述 输入 一行,两个整数l,r . 输出 一行,一个整数,表示第l 天到第r 天的愉悦值的和. 样例输入 64 89 样例输出 1818 数据范围 解法 可以参考数位动态规划的想法. 从个位开始 ...

  4. JZOJ 4732. 【NOIP2016提高A组模拟8.23】函数

    4732. [NOIP2016提高A组模拟8.23]函数 (Standard IO) Time Limits: 1500 ms  Memory Limits: 262144 KB  Detailed ...

  5. 【NOIP2016提高A组模拟9.14】数列编辑器

    题目 分析 比赛上,没有注意到询问只询问光标前面,于是只打了个暴力. 因为询问只询问光标前面,首先,当光标向后每移动到一个位置,顺便将这个位置的前缀和,和最大前缀和求出来. 总之,模拟 #includ ...

  6. 【JZOJ4746】【NOIP2016提高A组模拟9.3】树塔狂想曲

    题目描述 相信大家都在长训班学过树塔问题,题目很简单求最大化一个三角形数塔从上往下走的路径和.走的规则是:(i,j)号点只能走向(i+1,j)或者(i+1,j+1).如下图是一个数塔,映射到该数塔上行 ...

  7. 【JZOJ4745】【NOIP2016提高A组模拟9.3】看电影

    题目描述 听说NOIP2016大家都考得不错,于是CCF奖励省常中了 K 张变形金刚5的电影票奖励OI队的同学去看电影.可是省常中OI队的同学们共有 N(N >= K)人.于是机智的你想到了一个 ...

  8. 【JZOJ4803】【NOIP2016提高A组模拟9.28】求导

    题目描述 输入 输出 样例输入 2x^2+3x+1 样例输出 4x+3 数据范围 样例解释 求导的意思: 多项式是由若干个单项式构成的 单项式的一般形式是ax^b,其中ab都是常数,x是自变量 对于单 ...

  9. 【JZOJ4787】【NOIP2016提高A组模拟9.17】数格子

    题目描述 输入 输出 样例输入 1 10000 3 10000 5 10000 0 0 样例输出 1 11 95 数据范围 每个测试点数据组数不超过10组 解法 状态压缩动态规划. 设f[i][j]表 ...

随机推荐

  1. 在Spring容器外调用bean

    这个东西源于这种需求:一个应用丢到服务其后,不管用户有没有访问项目,这个后台线程都必须给我跑,而且这个线程还调用了Spring注入的bean,这样自然就会想到去监听Servlet的状态,当Servle ...

  2. eclipse 包含头文件出错

    最近这段时间自己在写游戏的框架,在做的过程中遇到了一个问题:没办法#include <iostream>,在eclipse下F3也找不到对应的 iostream 文件, 最后在晚上找资料, ...

  3. 【AI-人工智能-mmdetection】ModuleNotFoundError: No module named 'mmdet.version'

    在集成 mmdetection 框架时遇到这样的问题. ModuleNotFoundError: No module named 'mmdet.version' mmdetection 框架搭建过程很 ...

  4. 【VS开发】Caffelib中出现的问题:强制链接静态库所有符号(包括未被使用的)

    C++程序在链接一个静态库时,如果该静态库里的某些方法没有任何地方调用到,最终这些没有被调用到的方法或变量将会被丢弃掉,不会被链接到目标程序中.这样做大大减小生成二进制文件的体积.但是,某些时候,即使 ...

  5. 【miscellaneous】监狱安防系统智能视频监控系统设计方案

    1监狱安防新需求 随着司法监狱管理系统内视频监控系统的日益发展,现有的被动式人工监控这一传统模式已无法满足新形势下的监管工作需求,尤其是现在靠轮询的视频监控方式,无法对突发恶性事件做到第一时间的防御和 ...

  6. selenium-模拟鼠标

    需要导入的包: from selenium.webdriver import ActionChains 一.模拟鼠标右键 ActionChains(self.driver).context_click ...

  7. linxu passwd 给linux用户设置密码 命令

    [root@localhost ~]# passwd # 修改 root 用户的密码 passwd 给linux用户设置密码 命令 passwd www 直接passwd是当前用户设置密码 非交互式修 ...

  8. pandas中数据结构-Series

    pandas中数据结构-Series pandas简介 Pandas是一个开源的,BSD许可的Python库,为Python编程语言提供了高性能,易于使用的数据结构和数据分析工具.Python与Pan ...

  9. POJ 2995 Brackets 区间DP

    POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...

  10. HDU-5471 Count the Grid

    题目描述 一个矩阵中可以任意填\(m\)个数.给你\(N\)个小矩阵并且告诉你此矩阵中的最大值\(v\),求有多少种大矩阵满足所给条件.\((\%1e9+7)\) Input 包含\(T\)组数据. ...