转:http://www.linuxforu.com/2012/01/joy-of-programming-understanding-bit-fields-c/

By S.G. Ganesh on January 30, 2012 in CodingColumns · 2 Comments

One important feature that distinguishes C as a systems programming language is its support for bit-fields. Let us explore this feature in this column.

In C, structure members can be specified with size in number of bits, and this feature is known as bit-fields. Bit-fields are important for low-level (i.e., for systems programming) tasks such as directly accessing systems resources, processing, reading and writing in terms of streams of bits (such as processing packets in network programming), cryptography (encoding or decoding data with complex bit-manipulation), etc.

Consider the example of reading the components of a floating-point number. A 4-byte floating-point number in the IEEE 754 standard consists of the following:

  • The first bit is reserved for the sign bit — it is 1 if the number is negative and 0 if it is positive.
  • The next 8 bits are used to store the exponent in the unsigned form. When treated as a signed exponent, this exponent value ranges from -127 to +128. When treated as an unsigned value, its value ranges from 0 to 255.
  • The remaining 23 bits are used to store the mantissa.

Here is a program to print the value of a floating-point number into its constituents:

struct FP {
// the order of the members depends on the
// endian scheme of the underlying machine
      unsigned int mantissa : 23;
     unsigned int exponent : 8;
      unsigned int sign : 1;
} *fp;
 
int main() {
       float f = -1.0f;
       fp = (struct FP *)&f;
 
printf(" sign = %s, biased exponent = %u,
mantissa = %u ", fp->sign ? "negative" : "positive",
fp->exponent, fp->mantissa);
}

For the floating-point number -1.0, this program prints:

sign = negative, biased exponent = 127, mantissa = 0

Since the sign of the floating-point number is negative, the value of the sign bit is 1. Since the exponent is actual 0, in unsigned exponent format, it is represented as 127, and hence that value is printed. The mantissa in this case is 0, and hence it is printed as it is.

To understand how floating-point arithmetic works, see this Wikipedia article.

An alternative to using bit-fields is to use integers directly, and manipulate them using bitwise operators (such as &|~, etc.). In the case of reading the components of a floating-point number, we could use bitwise operations also. However, in many cases, such manipulation is a round-about way to achieve what we need, and the solution using bit-fields provides a more direct solution and hence is a useful feature.

There are numerous limitations in using bit-fields. For example, you cannot apply operators such as & (addressof)sizeof to bit-fields. This is because these operators operate in terms of bytes (not bits) and the bit-fields operate in terms of bits (not bytes), so you cannot use these operators. In other words, an expression such as sizeof(fp->sign) will result in a compiler error.

Another reason is that the underlying machine supports addressing in terms of bytes, and not bits, and hence such operators are not feasible. Then how does it work when expressions such as fp->sign, or fp->exponent are used in this program?

Note that C allows only integral types as bit-fields, and hence expressions referring to the bit-fields are converted to integers. In this program, as you can observe, we used the %u format specifier, which is for an unsigned integer — the bit-field value was converted into an integer and that is why the program worked.

Those new to bit-fields face numerous surprises when they try using them. This is because a lot of low-level details come into the picture while using them. In the programming example for bit-fields, you might have noticed the reversal in the order of the sign, exponent and mantissa, which is because of the underlying endian scheme followed. Endian refers to how bytes are stored in memory (see this Wikipedia article for more details).

Can you explain the following simple program that makes use of a bit-field?

struct bitfield {
    int bit : 1;
} BIT;
int main() {
   BIT.bit = 1;
   printf(" sizeof BIT is = %d\n", sizeof(BIT));
   printf(" value of bit is = %d ", BIT.bit);
 
}

It prints:

 sizeof BIT is = 4
 value of bit is = -1

Why? Note that it is not a compiler error to attempt to find the sizeof(BIT) because it is a structure; had we attempted sizeof(BIT.bit), that will not compile.

Now, coming to the output, if we had used only one bit in the BIT structure, why is thesizeof(BIT) 4 bytes? It is because of the addressing requirement of the underlying machine. The machine might perhaps require all structs to start in an address divisible by 4; or perhaps, allocating the size of a WORD for the structure is more efficient even if the underlying machine may require that structs start at an even address. Also, the compiler is free to add extra bits between any struct members (including bit-field members), which is known as “padding”.

Now let us come to the next output. We set BIT.bit = 1; and the printf statement printed -1! Why was that?

Note that we declared bit as int bit : 1; where the compiler treated the bit to be a signed integer of one bit size. Now, what is the range of a 1-bit signed integer?

It is from 0 to -1 (not 0 and 1, which is a common mistake). Remember the formula for finding out the range of signed integers: 2(n-1) to 2(n-1)-1 where N is the number of bits. For example, if N is 8 (number of bits in a byte), i.e., the range of a signed integer of size 8 is -2(8-1) to 2(8-1)-1, which is -128 to +127. Now, when N is 1, i.e., the range of a signed integer of size 1, it is -2(1-1)to 2(1-1)-1, which is -1 to 0!

No doubt, bit-fields are a powerful feature for low-level bit-manipulation. The cost of using bit-fields is the loss of portability. We already saw how padding and ending issues can affect portability in our simple program for reading the components of a floating-point number. Bit-fields should be used in places where space is very limited, and when functionality is demanding. Also, the gain in space could be lost in efficiency: bit-fields take more time to process, since the compiler takes care of (and hides) the underlying complexity in bit-manipulation to get/set the required data. Bugs associated with bit-fields can be notoriously hard to debug, since we need to understand data in terms of bits. So, use bit-fields sparingly and with care.

Feature image courtesy: Dean Terry. Reused under the terms of CC-BY-NC-ND 2.0 License.

Joy of Programming: Understanding Bit-fields in C的更多相关文章

  1. Core Java Volume I — 4.4. Static Fields and Methods

    4.4. Static Fields and MethodsIn all sample programs that you have seen, the main method is tagged w ...

  2. Questions that are independent of programming language. These questions are typically more abstract than other categories.

    Questions that are independent of programming language.  These questions are typically more abstract ...

  3. (转)Awesome Courses

    Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scatte ...

  4. Async/Await FAQ

    From time to time, I receive questions from developers which highlight either a need for more inform ...

  5. .NET并行编程1 - 并行模式

    设计模式——.net并行编程,清华大学出版的中译本. 相关资源地址主页面: http://parallelpatterns.codeplex.com/ 代码下载: http://parallelpat ...

  6. Lock-Free 编程

    文章索引 Lock-Free 编程是什么? Lock-Free 编程技术 读改写原子操作(Atomic Read-Modify-Write Operations) Compare-And-Swap 循 ...

  7. <转载>国外程序员推荐的免费编程书籍资源

    一.George Stocker 提供了一大串,分类如下: How to Design Programs: An Introduction to Computing and Programming 2 ...

  8. MySQL Crash Course #05# Chapter 9. 10. 11. 12 正则.函数. API

    索引 正则表达式:MySQL only supports a small subset of what is supported in most regular expression implemen ...

  9. The history of programming languages.(transshipment) + Personal understanding and prediction

    To finish this week's homework that introduce the history of programming languages , I surf the inte ...

随机推荐

  1. 20151007kaggle Titanic心得

    Titanic是kaggle上一个练手的比赛,kaggle平台提供一部分人的特征,以及是否遇难,目的是预测另一部分人是否遇难.目前抽工作之余,断断续续弄了点,成绩为0.79426.在这个比赛过程中,接 ...

  2. ECMAScript 6 入门学习笔记(持续更新)

    1.let命令(作用同var) ES6新增了let命令,用来声明变量.它的用法类似于var,但是所声明的变量,只在let命令所在的代码块内有效. { let a = 10; var b = 1; } ...

  3. HDU 2516 取石子游戏(FIB博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  4. ubuntu 14.04 64位系统编译RT288x_SDK

    sudo apt-get install gcc g++ binutils patch bzip2 flex bison make autoconf gettext texinfo unzip sha ...

  5. 进入GRUB改root用户密码

    开机读取倒计时时按任意键----e---->选择第二行 kernel ---->按e, 再按空格 >输入1----回车--->选择kernel输入b----> passw ...

  6. 使用logmnr方法找回被误删除Oracle的数据的脚本

    俗话说,常在河边走,哪有不湿鞋的.作为一个经常与数据库打交道的程序员,偶尔不小心误删除或误操作的数据也是在所难免的.如果是Oracle数据库,这里给您介绍一种从日志中找回数据的办法,下面这个地址是我以 ...

  7. 在drupal7中动态的为某个内容类型添加字段

    $myField_name = "my_new_field_name"; if(!field_info_field($myField_name)) // check if the ...

  8. UI:MVC设计模式

    不是因为有些事情难以做到,我们才失去自信:而是因为我们失去了自信,有些事情才显得难以做到.自信的第一步就是去尝试.不是因为有希望才坚持,而是因为坚持才有了希望.坚持尝试,就有可能成功.加油! Xcod ...

  9. EF小节

    EF学习笔记——生成自定义实体类 http://blog.csdn.net/leftfist/article/details/24889819 --工具: 1.entity developer 2.D ...

  10. 如何在我们项目中利用开源的图表(js chart)

            最近觉得应该把自己在技术上的一些心得记录在博客里面跟大家分享,一起讨论,一起成长!       这篇随笔主要为介绍chart在项目中的运用,因为在我们看到一些开源的chart时候,是使 ...