Do use segment tree

Time Limit: 1 Sec

Memory Limit: 256 MB

题目连接

http://www.bnuoj.com/v3/problem_show.php?pid=39566

Description

Given a tree with n (1 ≤ n ≤ 200,000) nodes and a list of q (1 ≤ q ≤ 100,000) queries, process the queries in order and output a value for each output query. The given tree is connected and each node on the tree has a weight wi (-10,000 ≤ wi ≤ 10,000).

Each query consists of a number ti (ti = 1, 2), which indicates the type of the query , and three numbers aibi and ci (1 ≤ ai, bi ≤ n, -10,000 ≤ ci ≤ 10,000). Depending on the query type, process one of the followings:

  • (ti = 1: modification query) Change the weights of all nodes on the shortest path between ai and bi (both inclusive) to ci.

  • (ti = 2: output query) First, create a list of weights on the shortest path between ai and bi (both inclusive) in order. After that, output the maximum sum of a non-empty continuous subsequence of the weights on the list. ci is ignored for output queries.

Input

The first line contains two integers n and q. On the second line, there are n integers which indicate w1w2, ... , wn.

Each of the following n - 1 lines consists of two integers si and ei (1 ≤ si, ei ≤ n), which means that there is an edge between si and ei.

Finally the following q lines give the list of queries, each of which contains four integers in the format described above. Queries must be processed one by one from top to bottom.

Output

For each output query, output the maximum sum in one line.

Sample Input

3 4
1 2 3
1 2
2 3
2 1 3 0
1 2 2 -4
2 1 3 0
2 2 2 0

Sample Output

6
3
-4

HINT

题意

给你一棵树,然后查询一条链上,区间连续最大和

然后区间更新两个操作

题解:

树链剖分+线段树

1.树链剖分 要bfs,不然会爆栈

2.如果wa了,可以尝试开ll试试

3.线段树,注意保存从左边开始的最大值,从右边开始最大值,这个区间的最大值,这个区间和

4.建议用lca写

//////////////////////////////

代码:

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn = 2e5 + ;
const long long inf = 1LL << ;
typedef pair<long long,long long>dl;
const long long check = -(1LL << ); typedef long long SgTreeDataType;
struct treenode
{
int L , R ;
SgTreeDataType sum , Lv , Rv , setv , maxv;
void updata(SgTreeDataType v)
{
setv = v ;
sum = (R-L+)*v;
maxv = (v > ) ? (R-L+)*v : v;
Rv = Lv = maxv;
}
}; struct QueryData
{
long long MaxValue , Left , Right ,sum;
QueryData(long long MaxValue = ,long long Left = ,long long Right = ,long long sum = ) :MaxValue(MaxValue) , Left(Left) , Right(Right) , sum(sum){}
}; treenode tree[maxn * ]; inline void push_down(int o)
{
if(tree[o].setv == inf) return ;
SgTreeDataType lazyval = tree[o].setv;
tree[*o].updata(lazyval) ; tree[*o+].updata(lazyval);
tree[o].setv = inf;
} inline void push_up(int o)
{
tree[o].sum = tree[*o].sum + tree[*o+].sum;
tree[o].Rv = max(tree[o*+].Rv,tree[o*+].sum + tree[o*].Rv);
tree[o].Lv = max(tree[o*].Lv,tree[o*].sum + tree[o*+].Lv);
tree[o].maxv = max( max(tree[o*].maxv , tree[o*+].maxv) , max( tree[o*].Rv + tree[o*+].Lv ,max(tree[o*].sum + tree[o*+].Lv , tree[o*+].sum + tree[o*].Rv)) );
} inline void build_tree(int L , int R , int o)
{
tree[o].L = L , tree[o].R = R,tree[o].sum = , tree[o].setv = inf , tree[o].maxv = tree[o].Lv = tree[o].Rv = ;
if (R > L)
{
int mid = (L+R) >> ;
build_tree(L,mid,o*);
build_tree(mid+,R,o*+);
}
} inline void updata(int QL,int QR,SgTreeDataType v,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) tree[o].updata(v);
else
{
push_down(o);
int mid = (L+R)>>;
if (QL <= mid) updata(QL,QR,v,o*);
if (QR > mid) updata(QL,QR,v,o*+);
push_up(o);
}
} inline QueryData QueryMax(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) return QueryData(tree[o].maxv,tree[o].Lv,tree[o].Rv,tree[o].sum);
else
{
int mid = (L+R)>>;
push_down(o);
QueryData res;
if(QL<=mid && QR <= mid) res = QueryMax(QL,QR,*o);
else if(QL>mid&&QR>mid) res = QueryMax(QL,QR,*o+);
else
{
QueryData Lv = QueryMax(QL,QR,*o);
QueryData Rv = QueryMax(QL,QR,*o+);
res.MaxValue = max( max(Lv.MaxValue,Rv.MaxValue) , Lv.Right+Rv.Left );
res.Left=Lv.Left,res.Right=Rv.Right;res.sum=Lv.sum+Rv.sum;
res.Left=max(res.Left,Lv.sum+Rv.Left);
res.Right=max(res.Right,Rv.sum+Lv.Right);
}
push_up(o);
return res;
}
} inline dl QueryLeftMax(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if(QL<=L && R <= QR) return make_pair(tree[o].Lv,tree[o].sum);
else
{
push_down(o);
int mid = (L+R) >> ;
dl result;
if(QL > mid) result = QueryLeftMax(QL,QR,o*+);
else if(QR <= mid) result = QueryLeftMax(QL,QR,o*);
else
{
dl LL = QueryLeftMax(QL,QR,o*);
dl RR = QueryLeftMax(QL,QR,o*+);
long long sum = LL.second + RR.second;
long long Lval = max(LL.first , LL.second + RR.first);
result = make_pair(Lval,sum);
}
push_up(o);
return result;
}
} inline dl QueryRightMax(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if(QL<=L && R <= QR) return make_pair(tree[o].Rv,tree[o].sum);
else
{
push_down(o);
int mid = (L+R) >> ;
dl result;
if(QL > mid) result = QueryRightMax(QL,QR,o*+);
else if(QR <= mid) result = QueryRightMax(QL,QR,o*);
else
{
dl LL = QueryRightMax(QL,QR,o*);
dl RR = QueryRightMax(QL,QR,o*+);
long long sum = LL.second + RR.second;
long long Rval = max(RR.first , RR.second + LL.first);
result = make_pair(Rval,sum);
}
push_up(o);
return result;
}
} long long QuerySum(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if(QL <= L && R <= QR) return tree[o].sum;
else
{
int mid = (L+R) >> ;
long long res = ;
push_down(o);
if(QL <= mid) res += QuerySum(QL,QR,*o);
if(QR > mid) res += QuerySum(QL,QR,*o+);
push_up(o);
return res;
}
} vector<int>G[maxn];
int n , q ,val[maxn] , son[maxn] , idx[maxn] , top[maxn] , deep[maxn], fa[maxn] , head[maxn],T=; void test()
{
n = ;
build_tree( , n , );
for(int i = ; i <= n ; ++ i) updata( i , i , i , );
updata(,,-,);
QueryData res;
dl BB;
res = QueryMax(,n,);
BB = QueryLeftMax(,n,);
cout << res.MaxValue << endl;
cout << BB.first << endl;
} //******** int dfs_clock;
int que[maxn*],num[maxn],iii[maxn],b[maxn]; void build_List()
{
int ft = , rear = ;
que[rear++] = ;
fa[] = ;
deep[] = ;
while(ft < rear)
{
int u = que[ft++];
for(int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if(v == fa[u]) continue;
fa[v] = u;
que[rear++] = v;
deep[v] = deep[u]+;
}
}
memset(num, , sizeof (num));
for(int i = n-; i >= ; i--)
{
int u = que[i];
num[u]++;
num[fa[u]] += num[u];
}
for(int i = ; i <= n; i++)
{
for(int j = ; j < G[i].size(); j++) if(G[i][j] != fa[i])
if(G[i][] == fa[i] || num[G[i][j]] > num[G[i][]])
swap(G[i][], G[i][j]);
}
top[] = ;
for(int i = ; i < n; i++)
{
int u = que[i];
if(G[fa[u]][] == u) top[u] = top[fa[u]];
else top[u] = u;
}
memset(iii, , sizeof (iii));
ft = ;
dfs_clock = ;
que[++ft] = ;
idx[] = ++dfs_clock;
b[] = val[];
while(ft)
{
int u = que[ft];
if(iii[u] >= G[u].size()) ft--;
else if(G[u][iii[u]] == fa[u]) iii[u]++;
else
{
int v = G[u][iii[u]];
que[++ft] = v;
idx[v] = ++dfs_clock;
b[idx[v]] = val[v];
iii[u]++;
}
}
for(int i = ; i <= n ; ++ i) updata(i , i , b[i] , );
} //********* void my_updata(int u , int v , int c)
{
int f1 = top[u] , f2 = top[v];
while(f1 != f2)
{
if(deep[f1] < deep[f2]) swap(f1,f2) , swap(u,v);
updata(idx[top[u]],idx[u],c,);
u = top[u] , u = fa[u] , f1 = top[u];
}
if(deep[u] > deep[v]) swap(u,v);
updata(idx[u] , idx[v] , c , );
} long long solve(int u ,int v)
{
int f1 = top[u] , f2 = top[v];
if(u == v) return QueryMax(idx[u],idx[u],).MaxValue;
long long s[];s[] = s[] = check;
int cur = ;
long long ans=check;
while(f1 != f2)
{
if(deep[f1] < deep[f2]) swap(f1,f2) , swap(u,v) , cur ^= ;
long long sum = QuerySum(idx[top[u]],idx[u],);
long long tt = QueryMax(idx[top[u]],idx[u],).MaxValue;
ans = max(ans , tt);
tt = QueryRightMax(idx[top[u]],idx[u],).first;
ans = max(ans ,tt);
ans = max(ans ,s[cur] + tt);
tt = QueryLeftMax(idx[top[u]],idx[u],).first;
s[cur] = max(sum + s[cur],tt);
ans = max(ans , s[cur]);
u = top[u] , u = fa[u] , f1 = top[u];
}
if(deep[u] > deep[v]) swap(u,v) , cur ^= ;
ans = max(ans , QueryMax(idx[u],idx[v],).MaxValue);
if(s[cur^] != (check)) ans = max( ans , s[cur^] + QueryRightMax(idx[u],idx[v],).first);
if(s[cur] != (check)) ans = max( ans , s[cur] + QueryLeftMax(idx[u],idx[v],).first);
if(s[cur] != (check) && s[cur^] != (check)) ans = max( ans , QuerySum(idx[u],idx[v],) + s[] + s[]);
return ans;
} inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} int main(int argc,char * argv[])
{
scanf("%d%d",&n,&q);
for(int i = ; i <= n ; ++ i) scanf("%d",val+i);
for(int i = ; i < n ; ++ i)
{
int u , v;scanf("%d%d",&u,&v);
G[u].push_back(v);G[v].push_back(u);
}
build_tree(,n,);
build_List();
while(q--)
{
int x,y,z,w;scanf("%d%d%d%d",&x,&y,&z,&w);
if(x == ) my_updata(y,z,w);
else printf("%lld\n",solve(y,z));
}
return ;
}

Aizu 2450 Do use segment tree 树链剖分+线段树的更多相关文章

  1. 【POJ3237】Tree(树链剖分+线段树)

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

  2. POJ3237 Tree 树链剖分 线段树

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3237 题意概括 Description 给你由N个结点组成的树.树的节点被编号为1到N,边被编号为1 ...

  3. 【CF725G】Messages on a Tree 树链剖分+线段树

    [CF725G]Messages on a Tree 题意:给你一棵n+1个节点的树,0号节点是树根,在编号为1到n的节点上各有一只跳蚤,0号节点是跳蚤国王.现在一些跳蚤要给跳蚤国王发信息.具体的信息 ...

  4. Spoj Query on a tree SPOJ - QTREE(树链剖分+线段树)

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...

  5. Water Tree CodeForces 343D 树链剖分+线段树

    Water Tree CodeForces 343D 树链剖分+线段树 题意 给定一棵n个n-1条边的树,起初所有节点权值为0. 然后m个操作, 1 x:把x为根的子树的点的权值修改为1: 2 x:把 ...

  6. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

  7. POJ3237 (树链剖分+线段树)

    Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...

  8. B20J_3231_[SDOI2014]旅行_树链剖分+线段树

    B20J_3231_[SDOI2014]旅行_树链剖分+线段树 题意: S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,城市信仰不同的宗教,为了方便,我们用不同的正整数代表各种宗教. S国 ...

  9. BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )

    BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...

随机推荐

  1. mac terminal终端ls命令参数详解

    原文:https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/ls.1.html -a ...

  2. poj 3126 Prime Path( bfs + 素数)

    题目:http://poj.org/problem?id=3126 题意:给定两个四位数,求从前一个数变到后一个数最少需要几步,改变的原则是每次只能改变某一位上的一个数,而且每次改变得到的必须是一个素 ...

  3. 函数page_get_space_id

    #define FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID  34 /****************************************************** ...

  4. Entity Framework中的Migration问题

    1.自从用上了Entity Framework(简称EF),妈妈再也不用担心我要写那么复杂的SQL语句了! 这是微软新一代的ORM工具,它能够将数据库的表中的记录映射成为程序中的一个对象,当然也能够将 ...

  5. Ext入门学习系列(五)表格控件(1)

    上节学习了Ext面板控件,为后面的各个控件学习奠定基础,在此基础上本章将学习网络开发最期待的功能——表格控件. 我们都知道网络编程语言中,除了.net其他的基本没有提供网格控件,而最近的asp.net ...

  6. 关于触发器、存储过程和DBlink的综合运用 (转)

    关于触发器.存储过程和DBlink的综合运用 需求描述: 需要在两个不同oracl数据库实例中进行数据逻辑处理.如果A实例中的表有新数据插入或者数据更新,那么在B实例中执行与之相关的存储过程. 先假设 ...

  7. click事件的参数化

    Browser("XXX").Page("XXX").Frame("iframe_main").WebElement("TB-50 ...

  8. Codeforces 603A Alternative Thinking

    题意:给你一个01串,必须替换一次,且替换的为子串.问换完后,最大01串长度. #include <bits/stdc++.h> typedef long long ll; using n ...

  9. JSF session的用法

    http://blog.csdn.net/finelife/article/details/1608632 1.写入sessionObject sessionName = "name&quo ...

  10. SQL Server Cpu 100% 的常见原因及优化

    SQL Server Cpu 100% 的情况并不太常见,一般引起 SQL Server 产生性能问题的,都是 阻塞.连接数.IO 磁盘等.所以,一般SQL Server 的使用率都是比较低的.但是, ...