Aizu 2450 Do use segment tree 树链剖分+线段树
Do use segment tree
Time Limit: 1 Sec
Memory Limit: 256 MB
题目连接
http://www.bnuoj.com/v3/problem_show.php?pid=39566
Description
Given a tree with n (1 ≤ n ≤ 200,000) nodes and a list of q (1 ≤ q ≤ 100,000) queries, process the queries in order and output a value for each output query. The given tree is connected and each node on the tree has a weight wi (-10,000 ≤ wi ≤ 10,000).
Each query consists of a number ti (ti = 1, 2), which indicates the type of the query , and three numbers ai, bi and ci (1 ≤ ai, bi ≤ n, -10,000 ≤ ci ≤ 10,000). Depending on the query type, process one of the followings:
(ti = 1: modification query) Change the weights of all nodes on the shortest path between ai and bi (both inclusive) to ci.
(ti = 2: output query) First, create a list of weights on the shortest path between ai and bi (both inclusive) in order. After that, output the maximum sum of a non-empty continuous subsequence of the weights on the list. ci is ignored for output queries.
Input
The first line contains two integers n and q. On the second line, there are n integers which indicate w1, w2, ... , wn.
Each of the following n - 1 lines consists of two integers si and ei (1 ≤ si, ei ≤ n), which means that there is an edge between si and ei.
Finally the following q lines give the list of queries, each of which contains four integers in the format described above. Queries must be processed one by one from top to bottom.
Output
For each output query, output the maximum sum in one line.
Sample Input
3 4
1 2 3
1 2
2 3
2 1 3 0
1 2 2 -4
2 1 3 0
2 2 2 0
Sample Output
6
3
-4
HINT
题意
给你一棵树,然后查询一条链上,区间连续最大和
然后区间更新两个操作
题解:
树链剖分+线段树
1.树链剖分 要bfs,不然会爆栈
2.如果wa了,可以尝试开ll试试
3.线段树,注意保存从左边开始的最大值,从右边开始最大值,这个区间的最大值,这个区间和
4.建议用lca写
//////////////////////////////
@)1%KBO0HM418$J94$1R.jpg)
代码:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn = 2e5 + ;
const long long inf = 1LL << ;
typedef pair<long long,long long>dl;
const long long check = -(1LL << ); typedef long long SgTreeDataType;
struct treenode
{
int L , R ;
SgTreeDataType sum , Lv , Rv , setv , maxv;
void updata(SgTreeDataType v)
{
setv = v ;
sum = (R-L+)*v;
maxv = (v > ) ? (R-L+)*v : v;
Rv = Lv = maxv;
}
}; struct QueryData
{
long long MaxValue , Left , Right ,sum;
QueryData(long long MaxValue = ,long long Left = ,long long Right = ,long long sum = ) :MaxValue(MaxValue) , Left(Left) , Right(Right) , sum(sum){}
}; treenode tree[maxn * ]; inline void push_down(int o)
{
if(tree[o].setv == inf) return ;
SgTreeDataType lazyval = tree[o].setv;
tree[*o].updata(lazyval) ; tree[*o+].updata(lazyval);
tree[o].setv = inf;
} inline void push_up(int o)
{
tree[o].sum = tree[*o].sum + tree[*o+].sum;
tree[o].Rv = max(tree[o*+].Rv,tree[o*+].sum + tree[o*].Rv);
tree[o].Lv = max(tree[o*].Lv,tree[o*].sum + tree[o*+].Lv);
tree[o].maxv = max( max(tree[o*].maxv , tree[o*+].maxv) , max( tree[o*].Rv + tree[o*+].Lv ,max(tree[o*].sum + tree[o*+].Lv , tree[o*+].sum + tree[o*].Rv)) );
} inline void build_tree(int L , int R , int o)
{
tree[o].L = L , tree[o].R = R,tree[o].sum = , tree[o].setv = inf , tree[o].maxv = tree[o].Lv = tree[o].Rv = ;
if (R > L)
{
int mid = (L+R) >> ;
build_tree(L,mid,o*);
build_tree(mid+,R,o*+);
}
} inline void updata(int QL,int QR,SgTreeDataType v,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) tree[o].updata(v);
else
{
push_down(o);
int mid = (L+R)>>;
if (QL <= mid) updata(QL,QR,v,o*);
if (QR > mid) updata(QL,QR,v,o*+);
push_up(o);
}
} inline QueryData QueryMax(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) return QueryData(tree[o].maxv,tree[o].Lv,tree[o].Rv,tree[o].sum);
else
{
int mid = (L+R)>>;
push_down(o);
QueryData res;
if(QL<=mid && QR <= mid) res = QueryMax(QL,QR,*o);
else if(QL>mid&&QR>mid) res = QueryMax(QL,QR,*o+);
else
{
QueryData Lv = QueryMax(QL,QR,*o);
QueryData Rv = QueryMax(QL,QR,*o+);
res.MaxValue = max( max(Lv.MaxValue,Rv.MaxValue) , Lv.Right+Rv.Left );
res.Left=Lv.Left,res.Right=Rv.Right;res.sum=Lv.sum+Rv.sum;
res.Left=max(res.Left,Lv.sum+Rv.Left);
res.Right=max(res.Right,Rv.sum+Lv.Right);
}
push_up(o);
return res;
}
} inline dl QueryLeftMax(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if(QL<=L && R <= QR) return make_pair(tree[o].Lv,tree[o].sum);
else
{
push_down(o);
int mid = (L+R) >> ;
dl result;
if(QL > mid) result = QueryLeftMax(QL,QR,o*+);
else if(QR <= mid) result = QueryLeftMax(QL,QR,o*);
else
{
dl LL = QueryLeftMax(QL,QR,o*);
dl RR = QueryLeftMax(QL,QR,o*+);
long long sum = LL.second + RR.second;
long long Lval = max(LL.first , LL.second + RR.first);
result = make_pair(Lval,sum);
}
push_up(o);
return result;
}
} inline dl QueryRightMax(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if(QL<=L && R <= QR) return make_pair(tree[o].Rv,tree[o].sum);
else
{
push_down(o);
int mid = (L+R) >> ;
dl result;
if(QL > mid) result = QueryRightMax(QL,QR,o*+);
else if(QR <= mid) result = QueryRightMax(QL,QR,o*);
else
{
dl LL = QueryRightMax(QL,QR,o*);
dl RR = QueryRightMax(QL,QR,o*+);
long long sum = LL.second + RR.second;
long long Rval = max(RR.first , RR.second + LL.first);
result = make_pair(Rval,sum);
}
push_up(o);
return result;
}
} long long QuerySum(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if(QL <= L && R <= QR) return tree[o].sum;
else
{
int mid = (L+R) >> ;
long long res = ;
push_down(o);
if(QL <= mid) res += QuerySum(QL,QR,*o);
if(QR > mid) res += QuerySum(QL,QR,*o+);
push_up(o);
return res;
}
} vector<int>G[maxn];
int n , q ,val[maxn] , son[maxn] , idx[maxn] , top[maxn] , deep[maxn], fa[maxn] , head[maxn],T=; void test()
{
n = ;
build_tree( , n , );
for(int i = ; i <= n ; ++ i) updata( i , i , i , );
updata(,,-,);
QueryData res;
dl BB;
res = QueryMax(,n,);
BB = QueryLeftMax(,n,);
cout << res.MaxValue << endl;
cout << BB.first << endl;
} //******** int dfs_clock;
int que[maxn*],num[maxn],iii[maxn],b[maxn]; void build_List()
{
int ft = , rear = ;
que[rear++] = ;
fa[] = ;
deep[] = ;
while(ft < rear)
{
int u = que[ft++];
for(int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if(v == fa[u]) continue;
fa[v] = u;
que[rear++] = v;
deep[v] = deep[u]+;
}
}
memset(num, , sizeof (num));
for(int i = n-; i >= ; i--)
{
int u = que[i];
num[u]++;
num[fa[u]] += num[u];
}
for(int i = ; i <= n; i++)
{
for(int j = ; j < G[i].size(); j++) if(G[i][j] != fa[i])
if(G[i][] == fa[i] || num[G[i][j]] > num[G[i][]])
swap(G[i][], G[i][j]);
}
top[] = ;
for(int i = ; i < n; i++)
{
int u = que[i];
if(G[fa[u]][] == u) top[u] = top[fa[u]];
else top[u] = u;
}
memset(iii, , sizeof (iii));
ft = ;
dfs_clock = ;
que[++ft] = ;
idx[] = ++dfs_clock;
b[] = val[];
while(ft)
{
int u = que[ft];
if(iii[u] >= G[u].size()) ft--;
else if(G[u][iii[u]] == fa[u]) iii[u]++;
else
{
int v = G[u][iii[u]];
que[++ft] = v;
idx[v] = ++dfs_clock;
b[idx[v]] = val[v];
iii[u]++;
}
}
for(int i = ; i <= n ; ++ i) updata(i , i , b[i] , );
} //********* void my_updata(int u , int v , int c)
{
int f1 = top[u] , f2 = top[v];
while(f1 != f2)
{
if(deep[f1] < deep[f2]) swap(f1,f2) , swap(u,v);
updata(idx[top[u]],idx[u],c,);
u = top[u] , u = fa[u] , f1 = top[u];
}
if(deep[u] > deep[v]) swap(u,v);
updata(idx[u] , idx[v] , c , );
} long long solve(int u ,int v)
{
int f1 = top[u] , f2 = top[v];
if(u == v) return QueryMax(idx[u],idx[u],).MaxValue;
long long s[];s[] = s[] = check;
int cur = ;
long long ans=check;
while(f1 != f2)
{
if(deep[f1] < deep[f2]) swap(f1,f2) , swap(u,v) , cur ^= ;
long long sum = QuerySum(idx[top[u]],idx[u],);
long long tt = QueryMax(idx[top[u]],idx[u],).MaxValue;
ans = max(ans , tt);
tt = QueryRightMax(idx[top[u]],idx[u],).first;
ans = max(ans ,tt);
ans = max(ans ,s[cur] + tt);
tt = QueryLeftMax(idx[top[u]],idx[u],).first;
s[cur] = max(sum + s[cur],tt);
ans = max(ans , s[cur]);
u = top[u] , u = fa[u] , f1 = top[u];
}
if(deep[u] > deep[v]) swap(u,v) , cur ^= ;
ans = max(ans , QueryMax(idx[u],idx[v],).MaxValue);
if(s[cur^] != (check)) ans = max( ans , s[cur^] + QueryRightMax(idx[u],idx[v],).first);
if(s[cur] != (check)) ans = max( ans , s[cur] + QueryLeftMax(idx[u],idx[v],).first);
if(s[cur] != (check) && s[cur^] != (check)) ans = max( ans , QuerySum(idx[u],idx[v],) + s[] + s[]);
return ans;
} inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} int main(int argc,char * argv[])
{
scanf("%d%d",&n,&q);
for(int i = ; i <= n ; ++ i) scanf("%d",val+i);
for(int i = ; i < n ; ++ i)
{
int u , v;scanf("%d%d",&u,&v);
G[u].push_back(v);G[v].push_back(u);
}
build_tree(,n,);
build_List();
while(q--)
{
int x,y,z,w;scanf("%d%d%d%d",&x,&y,&z,&w);
if(x == ) my_updata(y,z,w);
else printf("%lld\n",solve(y,z));
}
return ;
}
Aizu 2450 Do use segment tree 树链剖分+线段树的更多相关文章
- 【POJ3237】Tree(树链剖分+线段树)
Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...
- POJ3237 Tree 树链剖分 线段树
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3237 题意概括 Description 给你由N个结点组成的树.树的节点被编号为1到N,边被编号为1 ...
- 【CF725G】Messages on a Tree 树链剖分+线段树
[CF725G]Messages on a Tree 题意:给你一棵n+1个节点的树,0号节点是树根,在编号为1到n的节点上各有一只跳蚤,0号节点是跳蚤国王.现在一些跳蚤要给跳蚤国王发信息.具体的信息 ...
- Spoj Query on a tree SPOJ - QTREE(树链剖分+线段树)
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...
- Water Tree CodeForces 343D 树链剖分+线段树
Water Tree CodeForces 343D 树链剖分+线段树 题意 给定一棵n个n-1条边的树,起初所有节点权值为0. 然后m个操作, 1 x:把x为根的子树的点的权值修改为1: 2 x:把 ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- POJ3237 (树链剖分+线段树)
Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...
- B20J_3231_[SDOI2014]旅行_树链剖分+线段树
B20J_3231_[SDOI2014]旅行_树链剖分+线段树 题意: S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,城市信仰不同的宗教,为了方便,我们用不同的正整数代表各种宗教. S国 ...
- BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )
BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...
随机推荐
- hdu4714 Tree2cycle 把树剪成链
题目是问把一棵树通过剪边.加边形成一个环的最小代价. 分成两步,先把树剪成一些链,再把链连接成一个环. 设一棵有n个节点的树,剪掉X条边后,形成L条链. 那么代价为X+L. n-1-X=edgeNum ...
- bzoj1485
首先考虑dp,设f[i,j]表示1~i用过了,期中j个放在偶数位然后转移大家都会 这显然TLE,我们观察这个dp,任意前i个数,无论怎么放,放在奇数位的数的个数一定要大于等于放在偶数位的个数 于是很明 ...
- poj3265
考状态的dp 我的方法可能比较奇怪 设f[i,j]表示第i个月解决j个问题可以最多解决到第几个问题 容易知道,答案(月份)不会超过2n+1: f[i,j]=max(f[i-1,k]+j) 复杂度为O( ...
- javascript在页面head内动态插入style
纯js实现: var css = 'h1 { background: red; }', head = document.getElementsByTagName('head')[0], style = ...
- 【转】10分钟搭建NDK的Android开发环境
原文网址:http://blog.csdn.net/u012176591/article/details/23018913 作者:金良(golden1314521@gmail.com) csdn博客: ...
- HDU 5007 Post Robot
Post Robot Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- JMX学习一
JMX 即 Java Management Extensions Java管理扩展MBean 即 managed beans 被管 ...
- JMX学习笔记(二)-Notification
Notification通知,也可理解为消息,有通知,必然有发送通知的广播,JMX这里采用了一种订阅的方式,类似于观察者模式,注册一个观察者到广播里,当有通知时,广播通过调用观察者,逐一通知. 这里写 ...
- windows和linux间互传文件
方法1:Xshell传输文件 用rz,sz命令在xshell传输文件 很好用,然后有时候想在windows和linux上传或下载某个文件,其实有个很简单的方法就是rz,sz 首先你的Ubuntu需要安 ...
- mac 修改xcode的版本
http://blog.csdn.net/yangzhenping/article/details/50266245