bzoj2790
观察这道题,d(a,b) 就是先变成最大公约数然后再变成b
设g[x]表示x的质因数数目,不难得到d(a,b)=g[a/gcd(a,b)]+g[b/gcd(a,b)]
因为g[xy]=g[x]+g[y] 所以d(a,b)=g[a/gcd(a,b)]+g[b/gcd(a,b)]=g[a]+g[b]-2*g[gcd(a,b)]
g[]很明显可以用线性筛搞出来,下面考虑如何解决询问
我们发现从穷举是序列中哪个数来考虑,是无法优化的
考虑穷举约数(穷举约数是根号的复杂度,这是一个非常经典的转化)
设f[x]表示在序列中是x倍数的元素g[]最小且编号尽量小的
因为对于每个i,j不等于i,所以我们还要维护一个次优值
这一步我们可以O(n√a)的复杂度
然后我们对于每个元素,我们只要穷举约数,在这个约数是最大公约数的情况下的最优值即可
有人说,如果记录的f[x]的元素和当前询问元素的最大公约数是x的倍数而不是x怎么办
丝毫不影响,因为d(a,b)=g[a]+g[b]-2*g[gcd(a,b)],g[ax]>=g[x] a是正整数
如果这个更新了,那到后面那个最大公约数时肯定会被再更新
const inf=;
var f,w:array[..,..] of longint;
p,a,g:array[..] of longint;
k,mx,i,t,n,j,ans:longint; function min(a,b:longint):longint;
begin
if a>b then exit(b) else exit(a);
end; function cmp(a1,b1,a2,b2:longint):boolean;
begin
if a1=a2 then exit(b1<b2);
exit(a1<a2);
end; procedure work(x,i:longint);
begin
if cmp(g[a[i]],i,f[x,],w[x,]) then
begin
f[x,]:=f[x,];
w[x,]:=w[x,];
f[x,]:=g[a[i]];
w[x,]:=i;
end
else if cmp(g[a[i]],i,f[x,],w[x,]) then
begin
f[x,]:=g[a[i]];
w[x,]:=i;
end;
end; procedure get(x,i:longint);
begin
if w[x,]=i then
begin
if w[x,]= then exit;
if cmp(f[x,]-*g[x],w[x,],ans,k) then
begin
ans:=f[x,]-*g[x];
k:=w[x,];
end;
end
else if cmp(f[x,]-*g[x],w[x,],ans,k) then
begin
ans:=f[x,]-*g[x];
k:=w[x,];
end;
end; begin
readln(n);
for i:= to n do
begin
read(a[i]);
if mx<a[i] then mx:=a[i];
end;
g[]:=;
for i:= to mx do
begin
if g[i]= then
begin
g[i]:=;
inc(t);
p[t]:=i;
end;
for j:= to t do
begin
if i*p[j]>mx then break;
g[i*p[j]]:=g[i]+;
if i mod p[j]= then break;
end;
end;
for i:= to mx do
begin
f[i,]:=inf;
f[i,]:=inf;
end;
for i:= to n do
for j:= to trunc(sqrt(a[i])) do
if a[i] mod j= then
begin
work(j,i);
if j*j<>a[i] then work(a[i] div j,i);
end; for i:= to n do
begin
ans:=inf;
k:=;
for j:= to trunc(sqrt(a[i])) do
if a[i] mod j= then
begin
get(j,i);
if j*j<>a[i] then get(a[i] div j,i);
end;
writeln(k);
end;
end.
bzoj2790的更多相关文章
- 【BZOJ2790】[Poi2012]Distance 筛素数+调和级数
[BZOJ2790][Poi2012]Distance Description 对于两个正整数a.b,这样定义函数d(a,b):每次操作可以选择一个质数p,将a变成a*p或a/p, 如果选择变成a/p ...
- [BZOJ2790][Poi2012]Distance
2790: [Poi2012]Distance Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 225 Solved: 115[Submit][Sta ...
- POI2012题解
POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...
随机推荐
- OC面向对象多态笔记
面向对象的多态是建立在继承上,可以说没有继承就没有多态: 多态:父类指针指向了子类的对象: int main() { //假设已定义了Animal类和它的子类Dog,那么多态的代码体现就是 Anima ...
- axure7.0 汉化包下载
下载地址:http://files.cnblogs.com/files/feijian/axure7.0%E4%B8%AD%E6%96%87%E8%AF%AD%E8%A8%80%E6%B1%89%E5 ...
- SQL Server数据库事务日志序列号(LSN)介绍
原文:http://blog.csdn.net/tjvictor/article/details/5251463 日志序列编号(LSN)是事务日志里面每条记录的编号. 当你执行一次备份时,一些 ...
- mysql myisam
.frm .myd .myi insert delayted show variables like '%delayed%' lock read, write, read local pointer ...
- [转载]WebBrowser控件表单(form)的自动填写和提交
话说有了WebBrowser类,终于不用自己手动封装SHDocVw的AxWebBrowser这个ActiveX控件了.这个类如果仅仅作为一个和IE一模一样浏览器,那就太没意思了(还不如直接用IE呢). ...
- Unity3d 接入 移动MM支付SDK(2.3) 全攻略
原地址:http://blog.csdn.net/dingxiaowei2013/article/details/26842177 先将例程运行起来 下载例程(csdn积分不够上传不了,只能用百度网盘 ...
- Even Fibonacci numbers
--Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting ...
- C# DataTable转换成DataRow
linq中的cast<T>()及OfType<T>() DataTable dt=...........//获取从数据库中取出的数据(假设只有一条记录) //Cast<T ...
- Servlet 各种path路径比较
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果 ...
- Hadoop格式化HDFS报错java.net.UnknownHostException: localhost.localdomain: localhost.localdomain
异常描述: 在对HDFS格式化,执行hadoop namenode -format命令时,出现未知的主机名的问题,异常信息如下所示: [shirdrn@localhost bin]$ hadoop n ...