bzoj2595
一开始看是插头dp,后来发现还有一个叫斯坦纳树的东西
什么叫斯坦纳树,就是使给定点连通开销和最小的树(可以包含多余的点)
到这张平面图上,我们不难想到用dp来解决,设f[x,y,S]表示连通集合为S,树根为点(x,y)的最小开销
不难得到两个方程式
f[x,y,S]=min(f[x,y,s']+f[x,y,S-s']-a[x,y]) S'是S的一个子集,相当于合并两个数
f[x,y,S]=min(f[x',y',S]+a[x,y]) (x',y')与(x,y)相邻
由于景点很少,我们显然可以用状压dp,初始f[景点坐标,景点状态]=0
第一个方程转移大家都会,第二个方程转移是没有明确转移顺序,只要转移起点,因此我们用spfa转移
所以总的处理转移,我们穷举连通状况,然后先用第一个方程转移,然后再用第二个方程转移
const dx:array[..] of longint=(,,,-);
dy:array[..] of longint=(,-,,);
inf=;
type node=record
x,y,k:longint;
end; var q:array[..] of node;
pre:array[..,..,..] of node;
f:array[..,..,..] of longint;
v:array[..,..] of boolean;
a:array[..,..] of longint;
t,h,r,k,i,j,s,n,m,x,y:longint; function make(i,j,k:longint):node;
begin
make.x:=i;
make.y:=j;
make.k:=k;
end; procedure spfa(k:longint);
var i,x,y,x0,y0:longint;
begin
while h<=r do
begin
x0:=q[h].x; y0:=q[h].y;
v[x0,y0]:=false;
for i:= to do
begin
x:=x0+dx[i];
y:=y0+dy[i];
if (x<) or (x>n) or (y<) or (y>m) then continue;
if f[x,y,k]>f[x0,y0,k]+a[x,y] then
begin
f[x,y,k]:=f[x0,y0,k]+a[x,y];
pre[x,y,k]:=make(x0,y0,k);
if not v[x,y] then
begin
v[x,y]:=true;
inc(r);
q[r].x:=x; q[r].y:=y;
end;
end;
end;
inc(h);
end;
end; procedure dfs(x,y,k:longint);
var m:node;
begin
v[x,y]:=true;
m:=pre[x,y,k];
if m.x= then exit;
dfs(m.x,m.y,m.k);
if (m.x=x) and (m.y=y) then dfs(m.x,m.y,k-m.k);
end; begin
readln(n,m);
for i:= to n do
for j:= to m do
for k:= to do
f[i,j,k]:=inf;
for i:= to n do
for j:= to m do
begin
read(a[i,j]);
if a[i,j]= then
begin
f[i,j, shl t]:=;
inc(t);
end;
end;
h:=;
r:=;
for k:= to shl t- do
begin
for i:= to n do
for j:= to m do
begin
s:=k and (k-);
while s<> do //穷举子集
begin
if f[i,j,k]>f[i,j,s]+f[i,j,k-s]-a[i,j] then
begin
f[i,j,k]:=f[i,j,s]+f[i,j,k-s]-a[i,j];
pre[i,j,k]:=make(i,j,s); //记录从哪转移来的
end;
s:=k and (s-);
end;
if f[i,j,k]<inf then
begin
v[i,j]:=true;
inc(r);
q[r].x:=i; q[r].y:=j;
end;
end;
spfa(k);
h:=;
r:=;
end;
for i:= to n do
for j:= to m do
if a[i,j]= then
begin
x:=i;
y:=j;
break;
end; writeln(f[x,y, shl t-]);
dfs(x,y, shl t-);
for i:= to n do
begin
for j:= to m do
if a[i,j]= then write('x')
else if v[i,j] then write('o')
else write('_');
writeln;
end;
end.
bzoj2595的更多相关文章
- 【BZOJ2595】游览计划(状压DP,斯坦纳树)
题意:见题面(我发现自己真是越来越懒了) 有N*M的矩阵,每个格子有一个值a[i,j] 现要求将其中的K个点(称为关键点)用格子连接起来,取(i,j)的费用就是a[i,j] 求K点全部连通的最小花费以 ...
- BZOJ2595 WC2008游览计划(斯坦纳树)
斯坦纳树板子题. 考虑状压dp,设f[i][j][S]表示当前在点(i,j)考虑转移,其所在的联通块包含的关键点集(至少)为S的答案. 转移时首先枚举子集,有f[i][j][S]=min{f[i][j ...
- 【BZOJ2595】 [Wc2008]游览计划
BZOJ2595 [Wc2008]游览计划 Solution 考虑这是一个最小费用连通性的问题,既然大家都说这是什么斯坦纳树那就是的吧... 所以我们肯定可以这样设一个dp状态: \(dp_{i,j, ...
- 【BZOJ2595】[Wc2008]游览计划 斯坦纳树
[BZOJ2595][Wc2008]游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为 ...
- BZOJ2595 [Wc2008]游览计划 【状压dp + 最短路】
题目链接 BZOJ2595 题解 著名的斯坦纳树问题 设\(f[i][j][s]\)表示点\((i,j)\)与景点联通状况为\(s\)的最小志愿者数 设\(val[i][j]\)为\((i,j)\)需 ...
- BZOJ2595 Wc2008 游览计划 【斯坦纳树】【状压DP】*
BZOJ2595 Wc2008 游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个 ...
- [bzoj2595][WC2008]游览计划/[bzoj5180][Baltic2016]Cities_斯坦纳树
游览计划 bzoj-2595 wc-2008 题目大意:题目链接.题目连接. 注释:略. 想法:裸题求斯坦纳树. 斯坦纳树有两种转移方式,设$f[s][i]$表示联通状态为$s$,以$i$为根的最小代 ...
- bzoj2595 [Wc2008]游览计划——斯坦纳树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2595 今天刚学了斯坦纳树,还不太会,写一道题练习一下: 参考了博客:http://www.c ...
- BZOJ2595[WC2008]游览计划
Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个景点:否则表示控制该方块至少需要的志愿者数 ...
随机推荐
- ACE_linux:Reactor与Proactor两种模式的区别
一.概念: Reactor与Proactor两种模式的区别.这里我们只关注read操作,因为write操作也是差不多的.下面是Reactor的做法: 某个事件处理器宣称它对某个socket上的读事件很 ...
- 从 Typecho 自定义字段的调用代码看去
千呼万唤,Typecho 的"自定义字段"功能终于在 0.9 中出来了.然而,多数人还蒙在这样一个鼓里--该怎么在模板调用已经设置好的自定义字段呢?让我们从这里开始说下去: Typ ...
- WPF中禁止WebBrowser控件打开新窗口
一.针对纯WPF的WebBrowser控件: <summary> Suppress Script Errors In WPF WebBrowser </summary> pub ...
- poj 3641 Pseudoprime numbers Miller_Rabin测素裸题
题目链接 题意:题目定义了Carmichael Numbers 即 a^p % p = a.并且p不是素数.之后输入p,a问p是否为Carmichael Numbers? 坑点:先是各种RE,因为po ...
- SYN, FIN, ACK, PSH, RST, URG
在TCP层,有个FLAGS字段,这个字段有以下几个标识:SYN, FIN, ACK, PSH, RST, URG. 其中,对于我们日常的分析有用的就是前面的五个字段. 它们的含义是: SYN表示建立连 ...
- CodeForces 18C
Description Once Bob took a paper stripe of n squares (the height of the stripe is 1 square). In eac ...
- iOS 基础 第二天(0805)
0805 面向对象三大特性 封装.继承和多态 oc的方法都是在运行过程中才会检测的.编译时方法没实现只会出现警告,运行时出错.如果方法实现了但没有声明,运行时对象仍然可以调用方法不会出错.这是OC中弱 ...
- C#学习笔记---基础入门(二)
枚举 枚举是被命名的整型常数的集合:枚举类型的变量只有赋值后才能使用:不同枚举中的枚举值可以重名:可以自定义枚举值. enum Playstates { 跑, 跳,下滑,左转,右 ...
- Telerik_2012_Q3 (已破解)全套下载链接
1.Telerik_OpenAccess_ORM_2012_3_1012_SDK.zip (暂未提供下载) 2. Telerik_OpenAccess_ORM_2012_3_1012.zip 3. T ...
- mir9-lua——《热血沙城》45度ARPG手游-Lua移植版
mir9——<热血沙城>,是9秒论坛开源的一个使用Cocos2d-x-2.2.1引擎开发的45度ARPG手游Demo,源代码为c++.mir9-lua是mir9的Lua移植版,使用Quic ...