迁移学习(CDAN)《Conditional Adversarial Domain Adaptation》(已复现迁移)
论文信息
论文标题:Conditional Adversarial Domain Adaptation
论文作者:Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain
论文来源:JMLR 2016
论文地址:download
论文代码:download
引用次数:5292
1 背景
1. 1 问题
- 普通的对抗域自适应方法仅独立对齐特征,而未对于标签进行对齐,往往不充分 ==============> 对齐特征与类别的联合分布
- 当数据分布包含复杂的多模态结构时,对抗性自适应方法可能无法捕捉到这样的多模态结构,多模态结构只能通过特征和类之间的交叉协方差依赖性来充分捕获;即使判别器完全混淆,也不能保证两个分布完全相似 ==============> 多线性调整
- 条件域判别器强制使不同的样本具有相同的重要性,可能导致不确定预测的难迁移样本也许会对抗适应产生不良影响 ==============> 熵调整
1.2 条件生成对抗网络(CGAN)

- CGAN 是在 GAN 基础上做的一种改进,通过给原始 GAN 的生成器和判别器添加额外的条件信息(类别标签或者其它辅助信息),实现条件生成模型
- 对于生成器将类别标签与噪声信号的组合作为生成图片的输入;对于判别器将类别标签与图像数据拼接结果 x⨁y 作为输入
- CGAN 可解决带标签的数据生成问题
2 方法
2.1 整体框架(CDAN)

(a) 多线性调整:适用于低维场景, 将特征与类别的多线性映射 $T_{\otimes}(f, g)$ 作为鉴别器 $D$ 的输入
(b) 随机多线性调整:适用于高维场景, 随机抽取 $f$, $g$ 上的某些维度的多线性映射 $T_{\odot}(f, g)$ 作为鉴别器的输入损失函数
损失函数:
$\begin{array}{l}\mathcal{E}(G)=\mathbb{E}_{\left(\mathbf{x}_{i}^{s}, \mathbf{y}_{i}^{s}\right) \sim \mathcal{D}_{s}} L\left(G\left(\mathbf{x}_{i}^{s}\right), \mathbf{y}_{i}^{s}\right) \\\mathcal{E}(D, G)=-\mathbb{E}_{\mathbf{x}_{i}^{s} \sim \mathcal{D}_{s}} \log \left[D\left(\mathbf{f}_{i}^{s}, \mathbf{g}_{i}^{s}\right)\right]-\mathbb{E}_{\mathbf{x}_{j}^{t} \sim \mathcal{D}_{t}} \log \left[1-D\left(\mathbf{f}_{j}^{t}, \mathbf{g}_{j}^{t}\right)\right] \\ \underset{G}{\text{min}} \quad \mathcal{E}(G)-\lambda \mathcal{E}(D, G) \\ \underset{D}{\text{min}} \quad \mathcal{E}(D, G) \end{array}$
2.2 $f \oplus g$ 与 $f \otimes g$
$f \oplus g$ 串联: 直接将特征表示和分类器预测的类别标签拼接起来,由于 $f$, $g$ 相互独立,无法完全捕获特征表示和分类器预测之间的乘法交互作用,均值映射独立计算 $x$, $y$ 的均值:
$\mathbb{E}_{\mathbf{x y}}[\mathbf{x} \oplus \mathbf{y}]=\mathbb{E}_{\mathbf{x}}[\mathbf{x}] \oplus \mathbb{E}_{\mathbf{y}}[\mathbf{y}]$
即:将类信息和特征信息简单拼接;
$f \otimes g$ 多线性映射:模拟了不同变量之间的乘法相互作用,可以完全捕捉复杂数据分布背后的多模态结构,均值映射计算了每个类条件分布 $P(x \mid y)$ 的 均值:
$\mathbb{E}_{\mathbf{x y}}[\mathbf{x} \otimes \mathbf{y}]=\mathbb{E}_{\mathbf{x}}[\mathbf{x} \mid y=1] \oplus \ldots \oplus \mathbb{E}_{\mathbf{x}}[\mathbf{x} \mid y=C]$
即:用类信息对每个样本特征加权,然后拼接;
2.3 梯度爆炸
多线性映射的维度为 $f$, $g$ 的维度之积,易导致维度爆炸, 因此采用随机方法解决此问题,抽取 $f$, $g$ 上的某些维度做多线性映射,以近似 $f \otimes g$ :
$T_{\odot}(\mathbf{f}, \mathbf{g})=\frac{1}{\sqrt{d}}\left(\mathbf{R}_{\mathbf{f}} \mathbf{f}\right) \odot\left(\mathbf{R}_{\mathbf{g}} \mathbf{g}\right)$
其中 $\boldsymbol{R}_{\boldsymbol{f}}$, $\boldsymbol{R}_{g}$ 为训练过程中固定不变的随机矩阵,每个元素服从单方差对称分布, 适用分布包括均匀分布、高斯分布等; $\odot$ 表示矩阵对应位置元素相乘的操作; $d$ 表示抽取的维度数。
Note:显然公式是错误的 [ 矩阵左乘考虑的是样本之间的线性关系],$\mathbf{R}_{\mathbf{f}} \mathbf{f}$ 和 $\mathbf{R}_{\mathbf{g}} \mathbf{g}$ 的维度都对不上,正确如下:
$T_{\odot}(\mathbf{f}, \mathbf{g})=\frac{1}{\sqrt{d}}\left( \mathbf{f} \mathbf{R}_{\mathbf{f}}\right) \odot\left( \mathbf{g}\mathbf{R}_{\mathbf{g}}\right)$
可证明 $T_{\odot}$ 上进行内积近似 $T_{\otimes}$ 上进行内积,且 $T_{\odot}$ 是 $T_{\otimes}$ 的无偏估计,以深度网络最大单无数 4096 作为阈值:
$T(\mathbf{h})=\left\{\begin{array}{ll}T_{\otimes}(\mathbf{f}, \mathbf{g}) & \text { if } d_{f} \times d_{g} \leqslant 4096 \\T_{\odot}(\mathbf{f}, \mathbf{g}) & \text { otherwise }\end{array}\right.$
2.4 熵调整(CDAN+E)
公式如下:
$\begin{array}{l}\underset{G}{\text{min}} \quad \mathbb{E}_{\left(\mathbf{x}_{i}^{s}, \mathbf{y}_{i}^{s}\right) \sim \mathcal{D}_{o}} L\left(G\left(\mathbf{x}_{i}^{s}\right), \mathbf{y}_{i}^{s}\right) \\ \quad\quad+\lambda\left(\mathbb{E}_{\mathbf{x}_{i}^{s} \sim \mathcal{D}_{s}} \log \left[D\left(T\left(\mathbf{h}_{i}^{s}\right)\right)\right]+\mathbb{E}_{\mathbf{x}_{j}^{t} \sim \mathcal{D}_{t}} \log \left[1-D\left(T\left(\mathbf{h}_{j}^{t}\right)\right)\right]\right) \\\end{array}$
$\underset{D}{\text{max}} \quad \mathbb{E}_{\mathbf{x}_{i}^{s} \sim \mathcal{D}_{s}} \log \left[D\left(T\left(\mathbf{h}_{i}^{s}\right)\right)\right]+\mathbb{E}_{\mathbf{x}_{j}^{t} \sim \mathcal{D}_{t}} \log \left[1-D\left(T\left(\mathbf{h}_{j}^{t}\right)\right)\right]$
损失问题:条件域判别器的最大最小优化方法强制使不同的样本具有相同的重要性,可能导致不确定预测的难迁移样本也许会对抗适应产生不良影响
分类器预测不确定性的量化,使用熵定量预测的不确定性:
$H(\mathrm{~g})=-\sum_{c=1}^{C} g_{c} \log g_{c}$
预测的确定性则可表示为 $e^{-H(g)}$
损失改进:使用熵权重 $w(H(g))$调整条件域判别器接收的各个训练样本,使易于迁移的样本优先级更高,规避难迁移样本的影响:
$w(H(\mathbf{g}))=1+e^{-H(\mathbf{g})}$
熵调整后的损失函数:
$\begin{array}{l}\underset{G}{\text{min}} \quad \mathbb{E}_{\left(\mathbf{x}_{i}^{s}, \mathbf{y}_{i}^{s}\right) \sim \mathcal{D}_{s}} L\left(G\left(\mathbf{x}_{i}^{s}\right), \mathbf{y}_{i}^{s}\right) \\\quad+\lambda\left(\mathbb{E}_{\mathbf{x}_{i}^{s} \sim \mathcal{D}_{s}} w\left(H\left(\mathbf{g}_{i}^{s}\right)\right) \log \left[D\left(T\left(\mathbf{h}_{i}^{s}\right)\right)\right]+\mathbb{E}_{\mathbf{x}_{j}^{t} \sim \mathcal{D}_{t}} w\left(H\left(\mathbf{g}_{j}^{t}\right)\right) \log \left[1-D\left(T\left(\mathbf{h}_{j}^{t}\right)\right)\right]\right) \\\end{array}$
$\underset{D}{\text{max}} \quad \mathbb{E}_{\mathbf{x}_{i}^{s} \sim \mathcal{D}_{s}} w\left(H\left(\mathbf{g}_{i}^{s}\right)\right) \log \left[D\left(T\left(\mathbf{h}_{i}^{s}\right)\right)\right]+\mathbb{E}_{\mathbf{x}_{j}^{t} \sim \mathcal{D}_{t}} w\left(H\left(\mathbf{g}_{j}^{t}\right)\right) \log \left[1-D\left(T\left(\mathbf{h}_{j}^{t}\right)\right)\right]$
Note:熵越大,权重越小;
3 实验

迁移学习(CDAN)《Conditional Adversarial Domain Adaptation》(已复现迁移)的更多相关文章
- 【深度学习系列】迁移学习Transfer Learning
在前面的文章中,我们通常是拿到一个任务,譬如图像分类.识别等,搜集好数据后就开始直接用模型进行训练,但是现实情况中,由于设备的局限性.时间的紧迫性等导致我们无法从头开始训练,迭代一两百万次来收敛模型, ...
- 迁移学习(Transformer),面试看这些就够了!(附代码)
1. 什么是迁移学习 迁移学习(Transformer Learning)是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中.迁移学习是通过从已学习的相 ...
- 迁移学习、fine-tune和局部参数恢复
参考:迁移学习——Fine-tune 一.迁移学习 就是把已训练好的模型参数迁移到新的模型来帮助新模型训练. 模型的训练与预测: 深度学习的模型可以划分为 训练 和 预测 两个阶段. 训练 分为两种策 ...
- 【转载】 第四范式首席科学家杨强:AlphaGo的弱点及迁移学习的应对(附视频)
原文地址: https://www.jiqizhixin.com/articles/2017-06-02-2 ============================================= ...
- 《A Survey on Transfer Learning》迁移学习研究综述 翻译
迁移学习研究综述 Sinno Jialin Pan and Qiang Yang,Fellow, IEEE 摘要: 在许多机器学习和数据挖掘算法中,一个重要的假设就是目前的训练数据和将来的训练数据 ...
- 使用PyTorch进行迁移学习
概述 迁移学习可以改变你建立机器学习和深度学习模型的方式 了解如何使用PyTorch进行迁移学习,以及如何将其与使用预训练的模型联系起来 我们将使用真实世界的数据集,并比较使用卷积神经网络(CNNs) ...
- 迁移学习( Transfer Learning )
在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我们看到机器学习算法在当前的Web挖掘研究中存在着一个关 ...
- 迁移学习(Transfer Learning)(转载)
原文地址:http://blog.csdn.net/miscclp/article/details/6339456 在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型 ...
- 迁移学习(Transfer Learning)
原文地址:http://blog.csdn.net/miscclp/article/details/6339456 在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型 ...
- 基于双向LSTM和迁移学习的seq2seq核心实体识别
http://spaces.ac.cn/archives/3942/ 暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下.模型的效果不是最好的,但是胜在“端到端”, ...
随机推荐
- 2022-04-18内部群每日三题-清辉PMP
1.在为一个有预算限制的项目生成状态报告时,项目经理发现该项目比进度计划落后一周.若要将项目拉回正轨,项目经理应该怎么做? A.重新分配关键路径活动的团队成员. B.向项目发起人要求额外的时间. C. ...
- 每日一抄 Go语言等待组
package main import ( "fmt" "net/http" "sync" ) /* Go语言除了可以使用通道(channe ...
- python 发送 application/x-www-form-urlencoded 类型的数据包
在网上百度了很多,坑的要死,基本不咋好用,自己多尝试了几遍,成功实现了. data 的构建方式 data = f"page={page}&sign={sign}&t={t}& ...
- k8s 更改pod数量限制(默认每个节点最多110组pod)
1.登录 node 节点,查看kubelet启动文件路径 [root@xxxxxxxZ ~]# systemctl status kubelet ● kubelet.service - kubel ...
- maven处理jar包冲突
一.起因 在使用maven构建项目的时候,偶尔会遇上类似如下错误: (1)java.io.IOException: invalid constant type: 15 (2)java.lang.NoS ...
- 在css 中使用calc并且含有变量
bottom:~"calc(.9rem + constant(safe-area-inset-bottom))"; bottom:~"calc(.9rem + env ...
- FII-PRA006/010开发板硬件实验一
FII-PRA006/010开发板硬件实验一 以一位全加器为例介绍如何利用开发板进行板载实验.一位全加器的Verilog代码如下: 1 2 3 4 5 6 7 8 9 10 module fadd1 ...
- 面向对象ooDay9
精华笔记: 多态:多种形态 同一个对象被造型为不同的类型时,有不同的功能-------所有对象都是多态的(明天总结详细讲) 对象的多态:水.我.你...... 同一类型的引用在指向不同的对象时,有不同 ...
- 第一个Java程序(自动关机程序)
我的第一个程序 1.新建java工程 打开Eclipse,点击File,选择New,点击Java Project ,新建名为demo的工程,如图所示: 2.编写程序 1.打开demo工程,鼠标右键sr ...
- 用python写xml文件
def writeInfoToXml(filename, config_id, obj_name): from xml.dom.minidom import Document ''' eg: < ...